Meta-Analytics : Consensus Approaches and System Patterns for Data Analysis

Enregistré dans:
Détails bibliographiques
Auteur principal: Simske, Steven J.. (Auteur)
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science.
Autres localisations: Voir dans le Sudoc
Résumé: Meta-Analytics: Consensus Approaches and System Patterns for Data Analysis presents an exhaustive set of patterns for data science to use on any machine learning based data analysis task. The book virtually ensures that at least one pattern will lead to better overall system behavior than the use of traditional analytics approaches. The book is 'meta' to analytics, covering general analytics in sufficient detail for readers to engage with, and understand, hybrid or meta- approaches. The book has relevance to machine translation, robotics, biological and social sciences, medical and healthcare informatics, economics, business and finance. Inn addition, the analytics within can be applied to predictive algorithms for everyone from police departments to sports analysts. Provides comprehensive and systematic coverage of machine learning-based data analysis tasks Enables rapid progress towards competency in data analysis techniques Gives exhaustive and widely applicable patterns for use by data scientists Covers hybrid or 'meta' approaches, along with general analytics Lays out information and practical guidance on data analysis for practitioners working across all sectors
Accès en ligne: Accès à l'E-book
LEADER 02736nmm a2200433 i 4500
001 ebook-280310439
005 20240917164928.0
007 cu|uuu---uuuuu
008 240917s2019||||us ||||g|||| ||||||eng d
020 |a 9780128146248 
035 |a (OCoLC)1456999600 
035 |a FRCYB88955395 
035 |a FRCYB26088955395 
035 |a FRCYB24788955395 
035 |a FRCYB24888955395 
035 |a FRCYB29388955395 
035 |a FRCYB084688955395 
035 |a FRCYB087588955395 
035 |a FRCYB56788955395 
035 |a FRCYB097088955395 
035 |a FRCYB087088955395 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)244104905  |1 http://www.idref.fr/244104905/id  |a Simske, Steven J..  |4 aut.  |e Auteur 
245 1 0 |a Meta-Analytics :  |b Consensus Approaches and System Patterns for Data Analysis   |c Steven Simske. 
264 1 |a San Diego, CA :  |b Elsevier Science. 
264 2 |a Paris :  |b Cyberlibris,  |c 2019. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780128146248.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Meta-Analytics: Consensus Approaches and System Patterns for Data Analysis presents an exhaustive set of patterns for data science to use on any machine learning based data analysis task. The book virtually ensures that at least one pattern will lead to better overall system behavior than the use of traditional analytics approaches. The book is 'meta' to analytics, covering general analytics in sufficient detail for readers to engage with, and understand, hybrid or meta- approaches. The book has relevance to machine translation, robotics, biological and social sciences, medical and healthcare informatics, economics, business and finance. Inn addition, the analytics within can be applied to predictive algorithms for everyone from police departments to sports analysts. Provides comprehensive and systematic coverage of machine learning-based data analysis tasks Enables rapid progress towards competency in data analysis techniques Gives exhaustive and widely applicable patterns for use by data scientists Covers hybrid or 'meta' approaches, along with general analytics Lays out information and practical guidance on data analysis for practitioners working across all sectors 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955395  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280310439