Trends in deep learning methodologies : algorithms, applications, and systems
Enregistré dans:
Auteur principal: | Piuri, Vincenzo (1960-....). (Directeur de la publication) |
---|---|
Autres auteurs: | Srivastava, Rajshree (19..-....). (Directeur de la publication), Raj, Sandeep (19..-....)., Genovese, Angelo (1985-....). |
Support: | E-Book |
Langue: | Anglais |
Publié: |
London ; San Diego (Calif.) ; Cambridge (Mass.) :
Academic Press : Elsevier.
|
Sujets: | |
Autres localisations: | Voir dans le Sudoc |
Résumé: | "Trends in deep learning methodologies [...] covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Image, video processing and analysis, hardware, audio, acoustic and speech processing
par: Chellappa, Rama (1953-....).
Publié: 2013 -
Introduction au Deep Learning
par: Charniak, Eugene.
Publié: 2021 -
Deep learning
par: Kelleher, John D. (1974-....).
Publié: 2019 -
Micro-Doppler characteristics of radar targets
par: Zhang, Qun (19..-....).
Publié: 2016 -
Scilab de la théorie à la pratique.
par: Berger, Laurent (1963-....).
Publié: 2014