Trends in deep learning methodologies : algorithms, applications, and systems

Enregistré dans:
Détails bibliographiques
Auteur principal: Piuri, Vincenzo (1960-....). (Directeur de la publication)
Autres auteurs: Srivastava, Rajshree (19..-....). (Directeur de la publication), Raj, Sandeep (19..-....)., Genovese, Angelo (1985-....).
Support: E-Book
Langue: Anglais
Publié: London ; San Diego (Calif.) ; Cambridge (Mass.) : Academic Press : Elsevier.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: "Trends in deep learning methodologies [...] covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more
Accès en ligne: Accès à l'E-book
LEADER 04838cmm a2200577 i 4500
001 ebook-280308418
005 20240924015158.0
007 cu|uuu---uuuuu
008 240917s2020||||uk ||||g|||| ||||||eng d
020 |a 9780128232682 
035 |a (OCoLC)1456999525 
035 |a FRCYB88955535 
035 |a FRCYB084688955535 
035 |a FRCYB087088955535 
035 |a FRCYB087588955535 
035 |a FRCYB097088955535 
035 |a FRCYB24788955535 
035 |a FRCYB24888955535 
035 |a FRCYB26088955535 
035 |a FRCYB29388955535 
035 |a FRCYB56788955535 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a uk  |a us 
100 1 |0 (IdRef)156856158  |1 http://www.idref.fr/156856158/id  |a Piuri, Vincenzo  |d (1960-....).  |4 pbd.  |e Directeur de la publication 
245 1 0 |a Trends in deep learning methodologies :  |b algorithms, applications, and systems   |c edited by Vincenzo Piuri, Sandeep Raj, Angelo Genovese, Rajshree Srivastava. 
264 1 |a London ;  |a San Diego (Calif.) ;  |a Cambridge (Mass.) :  |b Academic Press :  |b Elsevier. 
264 2 |a Paris :  |b Cyberlibris,  |c 2020. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780128232682.jpg). 
504 |a Réf. bibliographiques en fin de chapitres. Index. 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a "Trends in deep learning methodologies [...] covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more 
559 2 |b 1. An introduction to deep learning applications in biometric recognition / Akash Dhiman ; Kanishk Gupta ; Deepak Kumar Sharma  |b 2. Deep learning in big data and data mining / Deepak Kumar Sharma ; Bhanu Tokas ; Leo Adlakha  |b 3. An overview of deep learning in big data, image, and signal processing in the modern digital age / Reinaldo Padilha França ; Ana Carolina Borges Monteiro et al  |b 4. Predicting retweet class using deep learning / Amit Kumar Kushwaha ; Arpan Kumar Kar ; P. Vigneswara Ilavarasan  |b 5. Role of the Internet of Things and deep learning for the growth of healthcare technology / Dinesh Bhatia ; S. Bagyaraj et al  |b 6. Deep learning methodology proposal for the classification of erythrocytes and leukocytes / Ana Carolina Borges Monteiro ; Yuzo Iano et al  |b 7. Dementia detection using the deep convolution neural network method / B. Janakiramaiah ; G. Kalyani  |b 8. Deep similarity learning for disease prediction / Vagisha Gupta ; Shelly Sachdeva ; Neha Dohare  |b 9. Changing the outlook of security and privacy with approaches to deep learning / Shweta Paliwal ; Vishal Bharti ; Amit Kumar Mishra  |b 10. E-CART: an improved data stream mining approach / Pardeep Kumar  |b 11. Deep learning-based detection and classification of adenocarcinoma cell nuclei / G. Kalyani ; B. Janakiramaiah  |b 12. Segmentation and classification of hand symbol images using classifiers / Jatinder Kaur ; Nitin Mittal et al 
650 7 |0 (IdRef)027234657  |1 http://www.idref.fr/027234657/id  |a Traitement d'images.  |2 ram 
650 7 |0 (IdRef)027253287  |1 http://www.idref.fr/027253287/id  |a Traitement du signal.  |2 ram 
650 7 |0 (IdRef)027411125  |1 http://www.idref.fr/027411125/id  |a Santé.  |2 ram 
650 7 |0 (IdRef)029607728  |1 http://www.idref.fr/029607728/id  |a Intelligence artificielle en médecine.  |2 ram 
650 7 |0 (IdRef)223540633  |1 http://www.idref.fr/223540633/id  |a Apprentissage profond.  |2 ram 
651 7 |a Deep learning.  |2 ram 
700 1 |0 (IdRef)254104215  |1 http://www.idref.fr/254104215/id  |a Srivastava, Rajshree  |d (19..-....).  |4 pbd.  |e Directeur de la publication 
700 1 |0 (IdRef)27057011X  |1 http://www.idref.fr/27057011X/id  |a Raj, Sandeep  |d (19..-....).  |4 pbd.  |e Directeur de la publication 
700 1 |0 (IdRef)270571523  |1 http://www.idref.fr/270571523/id  |a Genovese, Angelo  |d (1985-....).  |4 pbd.  |e Directeur de la publication 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955535  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280308418