Deep Network Design for Medical Image Computing : Principles and Applications

Enregistré dans:
Détails bibliographiques
Auteur principal: Liao, Haofu. (Auteur)
Autres auteurs: Zhou, S. Kevin. (Auteur), Luo, Jiebo.
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science.
Autres localisations: Voir dans le Sudoc
Résumé: Deep Network Design for Medical Image Computing: Principles and Applications covers a range of MIC tasks and discusses design principles of these tasks for deep learning approaches in medicine. These include skin disease classification, vertebrae identification and localization, cardiac ultrasound image segmentation, 2D/3D medical image registration for intervention, metal artifact reduction, sparse-view artifact reduction, etc. For each topic, the book provides a deep learning-based solution that takes into account the medical or biological aspect of the problem and how the solution addresses a variety of important questions surrounding architecture, the design of deep learning techniques, when to introduce adversarial learning, and more. This book will help graduate students and researchers develop a better understanding of the deep learning design principles for MIC and to apply them to their medical problems. Explains design principles of deep learning techniques for MIC Contains cutting-edge deep learning research on MIC Covers a broad range of MIC tasks, including the classification, detection, segmentation, registration, reconstruction and synthesis of medical images
Accès en ligne: Accès à l'E-book
LEADER 02797nmm a2200457 i 4500
001 ebook-280315279
005 20240917153301.0
007 cu|uuu---uuuuu
008 240917s2022||||us ||||g|||| ||||||eng d
020 |a 9780128244036 
035 |a (OCoLC)1456999502 
035 |a FRCYB88955560 
035 |a FRCYB26088955560 
035 |a FRCYB24788955560 
035 |a FRCYB24888955560 
035 |a FRCYB29388955560 
035 |a FRCYB084688955560 
035 |a FRCYB087588955560 
035 |a FRCYB56788955560 
035 |a FRCYB097088955560 
035 |a FRCYB087088955560 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |a Liao, Haofu.  |4 aut.  |e Auteur 
245 1 0 |a Deep Network Design for Medical Image Computing :  |b Principles and Applications   |c Haofu Liao, S. Kevin Zhou, Jiebo Luo. 
264 1 |a San Diego, CA :  |b Elsevier Science. 
264 2 |a Paris :  |b Cyberlibris,  |c 2022. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780128244036.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Deep Network Design for Medical Image Computing: Principles and Applications covers a range of MIC tasks and discusses design principles of these tasks for deep learning approaches in medicine. These include skin disease classification, vertebrae identification and localization, cardiac ultrasound image segmentation, 2D/3D medical image registration for intervention, metal artifact reduction, sparse-view artifact reduction, etc. For each topic, the book provides a deep learning-based solution that takes into account the medical or biological aspect of the problem and how the solution addresses a variety of important questions surrounding architecture, the design of deep learning techniques, when to introduce adversarial learning, and more. This book will help graduate students and researchers develop a better understanding of the deep learning design principles for MIC and to apply them to their medical problems. Explains design principles of deep learning techniques for MIC Contains cutting-edge deep learning research on MIC Covers a broad range of MIC tasks, including the classification, detection, segmentation, registration, reconstruction and synthesis of medical images 
700 1 |a Zhou, S. Kevin.  |4 aut.  |e Auteur 
700 1 |a Luo, Jiebo.  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955560  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280315279