Mastering PyTorch : Create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond

Enregistré dans:
Détails bibliographiques
Auteur principal: Jha, Ashish Ranjan. (Auteur)
Support: E-Book
Langue: Anglais
Publié: Birmingham : Packt Publishing.
Autres localisations: Voir dans le Sudoc
Résumé: Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples. Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks. Purchase of the print or Kindle book includes a free eBook in PDF formatKey FeaturesUnderstand how to use PyTorch to build advanced neural network modelsGet the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and DockerUnlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworksBook DescriptionPyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You'll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You'll deploy PyTorch models to production, including mobile devices. Finally, you'll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You'll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learnImplement text, vision, and music generation models using PyTorchBuild a deep Q-network (DQN) model in PyTorchDeploy PyTorch models on mobile devices (Android and iOS)Become well versed in rapid prototyping using PyTorch with fastaiPerform neural architecture search effectively using AutoMLEasily interpret machine learning models using CaptumDesign ResNets, LSTMs, and graph neural networks (GNNs)Create language and vision transformer models using Hugging FaceWho this book is forThis deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required
Accès en ligne: Accès à l'E-book
LEADER 04718cmm a2200565 i 4500
001 ebook-280314817
005 20241024012627.0
007 cu|uuu---uuuuu
008 240917s2024||||uk ||||g|||| ||||||eng d
020 |a 9781801079969 
035 |a (OCoLC)1456998883 
035 |a FRCYB88957651 
035 |a FRCYB26088957651 
035 |a FRCYB14088957651 
035 |a FRCYB19188957651 
035 |a FRCYB24288957651 
035 |a FRCYB26888957651 
035 |a FRCYB27488957651 
035 |a FRCYB24788957651 
035 |a FRCYB24888957651 
035 |a FRCYB29388957651 
035 |a FRCYB29588957651 
035 |a FRCYB55488957651 
035 |a FRCYB55988957651 
035 |a FRCYB084688957651 
035 |a FRCYB085688957651 
035 |a FRCYB087588957651 
035 |a FRCYB087888957651 
035 |a FRCYB56788957651 
035 |a FRCYB095788957651 
035 |a FRCYB097088957651 
035 |a FRCYB087088957651 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |a Jha, Ashish Ranjan.  |4 aut.  |e Auteur 
245 1 0 |a Mastering PyTorch :  |b Create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond   |c Ashish Ranjan Jha. 
264 1 |a Birmingham :  |b Packt Publishing. 
264 2 |a Paris :  |b Cyberlibris,  |c 2024. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9781801079969.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples. Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks. Purchase of the print or Kindle book includes a free eBook in PDF formatKey FeaturesUnderstand how to use PyTorch to build advanced neural network modelsGet the best from PyTorch by working with Hugging Face, fastai, PyTorch Lightning, PyTorch Geometric, Flask, and DockerUnlock faster training with multiple GPUs and optimize model deployment using efficient inference frameworksBook DescriptionPyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You'll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You'll deploy PyTorch models to production, including mobile devices. Finally, you'll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You'll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learnImplement text, vision, and music generation models using PyTorchBuild a deep Q-network (DQN) model in PyTorchDeploy PyTorch models on mobile devices (Android and iOS)Become well versed in rapid prototyping using PyTorch with fastaiPerform neural architecture search effectively using AutoMLEasily interpret machine learning models using CaptumDesign ResNets, LSTMs, and graph neural networks (GNNs)Create language and vision transformer models using Hugging FaceWho this book is forThis deep learning with PyTorch book is for data scientists, machine learning engineers, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning models using PyTorch. This book is ideal for those looking to switch from TensorFlow to PyTorch. Working knowledge of deep learning with Python is required 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88957651  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280314817