Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation

Enregistré dans:
Détails bibliographiques
Auteur principal: Li, Qiang. (Éditeur scientifique)
Autres auteurs: Luo, Shan. (Éditeur scientifique), Chen, Zhaopeng., Yang, Chenguang., Zhang, Jianwei.
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science.
Autres localisations: Voir dans le Sudoc
Résumé: Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human's dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches
Accès en ligne: Accès à l'E-book
LEADER 03482nmm a2200481 i 4500
001 ebook-280313926
005 20240917164917.0
007 cu|uuu---uuuuu
008 240917s2022||||us ||||g|||| ||||||eng d
020 |a 9780323904179 
035 |a (OCoLC)1456999269 
035 |a FRCYB88955601 
035 |a FRCYB26088955601 
035 |a FRCYB24788955601 
035 |a FRCYB24888955601 
035 |a FRCYB29388955601 
035 |a FRCYB084688955601 
035 |a FRCYB087588955601 
035 |a FRCYB56788955601 
035 |a FRCYB097088955601 
035 |a FRCYB087088955601 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |a Li, Qiang.  |4 edt.  |e Éditeur scientifique 
245 1 0 |a Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation   |c Edited by Qiang Li, Shan Luo, Zhaopeng Chen, [et autres]. 
264 1 |a San Diego, CA :  |b Elsevier Science. 
264 2 |a Paris :  |b Cyberlibris,  |c 2022. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780323904179.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning. Provides a review of tactile perception and the latest advances in the use of robotic dexterous manipulation Presents the most detailed work on synthesizing intelligent tactile perception, skill learning and adaptive control Introduces recent work on human's dexterous skill representation and learning and the adaptive control schema and its learning by imitation and exploration Reveals and illustrates how robots can improve dexterity by modern tactile sensing, interactive perception, learning and adaptive control approaches 
700 1 |a Luo, Shan.  |4 edt.  |e Éditeur scientifique 
700 1 |a Chen, Zhaopeng.  |4 edt.  |e Éditeur scientifique 
700 1 |0 (IdRef)169978877  |1 http://www.idref.fr/169978877/id  |a Yang, Chenguang.  |4 edt.  |e Éditeur scientifique 
700 1 |0 (IdRef)127478043  |1 http://www.idref.fr/127478043/id  |a Zhang, Jianwei.  |4 edt.  |e Éditeur scientifique 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955601  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280313926