Stability and Controls Analysis for Delay Systems

Enregistré dans:
Détails bibliographiques
Auteur principal: Wang, JinRong (19..-....). (Auteur)
Autres auteurs: Fečkan, Michal. (Auteur), Li, Mengmeng.
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science.
Autres localisations: Voir dans le Sudoc
Résumé: Stability and Controls Analysis for Delay Systems is devoted to stability, controllability and iterative learning control (ILC) to delay systems, including first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from physics, biology, population dynamics, ecology and economics, currently not presented in other books on conventional fields. Delayed exponential matrix function approach is widely used to derive the representation and stability of the solutions and the controllability. ILC design are also established, which can be regarded as a way to find the control function. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique. Presents the representation and stability of solutions via the delayed exponential matrix function approach Gives useful sufficient conditions to guarantee controllability Establishes ILC design and focuses on new systems such as the first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from various subjects
Accès en ligne: Accès à l'E-book
LEADER 02817nmm a2200445 i 4500
001 ebook-280313004
005 20240917164739.0
007 cu|uuu---uuuuu
008 240917s2022||||us ||||g|||| ||||||eng d
020 |a 9780323997935 
035 |a (OCoLC)1456604515 
035 |a FRCYB88955666 
035 |a FRCYB26088955666 
035 |a FRCYB07488955666 
035 |a FRCYB29388955666 
035 |a FRCYB55488955666 
035 |a FRCYB55988955666 
035 |a FRCYB084688955666 
035 |a FRCYB087888955666 
035 |a FRCYB095788955666 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)229875467  |1 http://www.idref.fr/229875467/id  |a Wang, JinRong  |d (19..-....).  |4 aut.  |e Auteur 
245 1 0 |a Stability and Controls Analysis for Delay Systems   |c Jinrong Wang, Michal Feckan, Mengmeng Li. 
264 1 |a San Diego, CA :  |b Elsevier Science. 
264 2 |a Paris :  |b Cyberlibris,  |c 2022. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780323997935.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Stability and Controls Analysis for Delay Systems is devoted to stability, controllability and iterative learning control (ILC) to delay systems, including first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from physics, biology, population dynamics, ecology and economics, currently not presented in other books on conventional fields. Delayed exponential matrix function approach is widely used to derive the representation and stability of the solutions and the controllability. ILC design are also established, which can be regarded as a way to find the control function. The broad variety of achieved results with rigorous proofs and many numerical examples make this book unique. Presents the representation and stability of solutions via the delayed exponential matrix function approach Gives useful sufficient conditions to guarantee controllability Establishes ILC design and focuses on new systems such as the first order system, oscillating systems, impulsive systems, fractional systems, difference systems and stochastic systems raised from various subjects 
700 1 |0 (IdRef)128294728  |1 http://www.idref.fr/128294728/id  |a Fečkan, Michal.  |4 aut.  |e Auteur 
700 1 |a Li, Mengmeng.  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955666  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280313004