Smart Energy and Electric Power Systems : Current Trends and New Intelligent Perspectives

Enregistré dans:
Détails bibliographiques
Auteur principal: Padmanaban, Sanjeevikumar. (Éditeur scientifique)
Autres auteurs: Holm-Nielsen, Jens Bo (19..-....). (Éditeur scientifique), Padmanandam, Kayal., Dhanaraj, Rajesh Kumar (19..-....)., Balusamy, Balamurugan (19..-....).
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science.
Autres localisations: Voir dans le Sudoc
Résumé: Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-making and mitigate catastrophic power shortages. The book reviews foundations towards the integration of machine learning and smart power systems before addressing key challenges and issues. The work then explores AI- and ML-informed techniques to rebalancing of supply and demand. Methods discussed include distributed energy resources and prosumer markets, electricity demand prediction, component fault detection, and load balancing. Security solutions are introduced, along with potential solutions to cyberattacks, security data detection and critical loads in power systems. The work closes with a lengthy discussion, informed by case studies, on integrating AI and ML into the modern energy sector. Helps improve the prediction capability of AI algorithms to make evidence-based decisions in the smart supply of electricity, including load shedding Focuses on how to integrate AI and ML into the energy sector in the real-world, with many chapters accompanied by case studies Addresses a number of proven AI and ML- informed techniques in rebalancing supply and demand
Accès en ligne: Accès à l'E-book
LEADER 03417nmm a2200469 i 4500
001 ebook-280312989
005 20240917165333.0
007 cu|uuu---uuuuu
008 240917s2022||||us ||||g|||| ||||||eng d
020 |a 9780323916851 
035 |a (OCoLC)1456604447 
035 |a FRCYB88955627 
035 |a FRCYB26088955627 
035 |a FRCYB07488955627 
035 |a FRCYB29388955627 
035 |a FRCYB55488955627 
035 |a FRCYB55988955627 
035 |a FRCYB084688955627 
035 |a FRCYB087888955627 
035 |a FRCYB095788955627 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |a Padmanaban, Sanjeevikumar.  |4 edt.  |e Éditeur scientifique 
245 1 0 |a Smart Energy and Electric Power Systems :  |b Current Trends and New Intelligent Perspectives   |c Edited by Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, Kayal Padmanandam, [et autres]. 
264 1 |a San Diego, CA :  |b Elsevier Science. 
264 2 |a Paris :  |b Cyberlibris,  |c 2022. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780323916851.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-making and mitigate catastrophic power shortages. The book reviews foundations towards the integration of machine learning and smart power systems before addressing key challenges and issues. The work then explores AI- and ML-informed techniques to rebalancing of supply and demand. Methods discussed include distributed energy resources and prosumer markets, electricity demand prediction, component fault detection, and load balancing. Security solutions are introduced, along with potential solutions to cyberattacks, security data detection and critical loads in power systems. The work closes with a lengthy discussion, informed by case studies, on integrating AI and ML into the modern energy sector. Helps improve the prediction capability of AI algorithms to make evidence-based decisions in the smart supply of electricity, including load shedding Focuses on how to integrate AI and ML into the energy sector in the real-world, with many chapters accompanied by case studies Addresses a number of proven AI and ML- informed techniques in rebalancing supply and demand 
700 1 |0 (IdRef)255257686  |1 http://www.idref.fr/255257686/id  |a Holm-Nielsen, Jens Bo  |d (19..-....).  |4 edt.  |e Éditeur scientifique 
700 1 |a Padmanandam, Kayal.  |4 edt.  |e Éditeur scientifique 
700 1 |0 (IdRef)265903114  |1 http://www.idref.fr/265903114/id  |a Dhanaraj, Rajesh Kumar  |d (19..-....).  |4 edt.  |e Éditeur scientifique 
700 1 |0 (IdRef)261741721  |1 http://www.idref.fr/261741721/id  |a Balusamy, Balamurugan  |d (19..-....).  |4 edt.  |e Éditeur scientifique 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955627  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280312989