Affine Arithmetic-Based Methods for Uncertain Power System Analysis

Enregistré dans:
Détails bibliographiques
Auteur principal: Vaccaro, Alfredo. (Auteur)
Autres auteurs: Pepiciello, Antonio. (Auteur)
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science.
Autres localisations: Voir dans le Sudoc
Résumé: Affine Arithmetic-Based Methods for Uncertain Power System Analysis presents the unique properties and representative applications of Affine Arithmetic in power systems analysis, particularly as they are deployed for reliability optimization. The work provides a comprehensive foundation in Affine Arithmetic necessary to understand the central computing paradigms that can be adopted for uncertain power flow and optimal power flow analyses. These paradigms are adapted and applied to case studies, which integrate benchmark test systems and full step-by-step procedure for implementation so that readers are able to replicate and modify. The work is presented with illustrative numerical examples and MATLAB computations. Provides a uniquely comprehensive review of affine arithmetic in both its core theoretical underpinnings and their developed applications to power system analysis Details the exemplary benefits derived by the deployment of affine arithmetic methods for uncertainty handling in decision-making processes Clarifies arithmetical complexity and eases the understanding of illustrative methodologies for researchers in both power system and decision-making fields
Accès en ligne: Accès à l'E-book
LEADER 02760nmm a2200433 i 4500
001 ebook-280312962
005 20240917165333.0
007 cu|uuu---uuuuu
008 240917s2022||||us ||||g|||| ||||||eng d
020 |a 9780323905039 
035 |a (OCoLC)1456604550 
035 |a FRCYB88955602 
035 |a FRCYB26088955602 
035 |a FRCYB07488955602 
035 |a FRCYB29388955602 
035 |a FRCYB55488955602 
035 |a FRCYB55988955602 
035 |a FRCYB084688955602 
035 |a FRCYB087888955602 
035 |a FRCYB095788955602 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)167359665  |1 http://www.idref.fr/167359665/id  |a Vaccaro, Alfredo.  |4 aut.  |e Auteur 
245 1 0 |a Affine Arithmetic-Based Methods for Uncertain Power System Analysis   |c Alfredo Vaccaro, Antonio Pepiciello. 
264 1 |a San Diego, CA :  |b Elsevier Science. 
264 2 |a Paris :  |b Cyberlibris,  |c 2022. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780323905039.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Affine Arithmetic-Based Methods for Uncertain Power System Analysis presents the unique properties and representative applications of Affine Arithmetic in power systems analysis, particularly as they are deployed for reliability optimization. The work provides a comprehensive foundation in Affine Arithmetic necessary to understand the central computing paradigms that can be adopted for uncertain power flow and optimal power flow analyses. These paradigms are adapted and applied to case studies, which integrate benchmark test systems and full step-by-step procedure for implementation so that readers are able to replicate and modify. The work is presented with illustrative numerical examples and MATLAB computations. Provides a uniquely comprehensive review of affine arithmetic in both its core theoretical underpinnings and their developed applications to power system analysis Details the exemplary benefits derived by the deployment of affine arithmetic methods for uncertainty handling in decision-making processes Clarifies arithmetical complexity and eases the understanding of illustrative methodologies for researchers in both power system and decision-making fields 
700 1 |a Pepiciello, Antonio.  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955602  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280312962