Brain and Nature-Inspired Learning, Computation and Recognition

Enregistré dans:
Détails bibliographiques
Auteur principal: Jiao, Licheng. (Auteur)
Autres auteurs: Shang, Ronghua. (Auteur), Liu, Fang., Zhang, Weitong.
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science.
Autres localisations: Voir dans le Sudoc
Résumé: Brain and Nature-Inspired Learning, Computation and Recognition presents a systematic analysis of neural networks, natural computing, machine learning and compression, algorithms and applications inspired by the brain and biological mechanisms found in nature. Sections cover new developments and main applications, algorithms and simulations. Developments in brain and nature-inspired learning have promoted interest in image processing, clustering problems, change detection, control theory and other disciplines. The book discusses the main problems and applications pertaining to bio-inspired computation and recognition, introducing algorithm implementation, model simulation, and practical application of parameter setting. Readers will find solutions to problems in computation and recognition, particularly neural networks, natural computing, machine learning and compressed sensing. This volume offers a comprehensive and well-structured introduction to brain and nature-inspired learning, computation, and recognition. Presents an invaluable systematic introduction to brain and nature-inspired learning, computation and recognition Describes the biological mechanisms, mathematical analyses and scientific principles behind brain and nature-inspired learning, calculation and recognition Systematically analyzes neural networks, natural computing, machine learning and compression, algorithms and applications inspired by the brain and biological mechanisms found in nature Discusses the theory and application of algorithms and neural networks, natural computing, machine learning and compression perception
Accès en ligne: Accès à l'E-book
LEADER 03235nmm a2200457 i 4500
001 ebook-280310498
005 20240917153226.0
007 cu|uuu---uuuuu
008 240917s2020||||us ||||g|||| ||||||eng d
020 |a 9780128204047 
035 |a (OCoLC)1456605636 
035 |a FRCYB88955480 
035 |a FRCYB26088955480 
035 |a FRCYB07488955480 
035 |a FRCYB29388955480 
035 |a FRCYB55488955480 
035 |a FRCYB55988955480 
035 |a FRCYB084688955480 
035 |a FRCYB087888955480 
035 |a FRCYB095788955480 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |a Jiao, Licheng.  |4 aut.  |e Auteur 
245 1 0 |a Brain and Nature-Inspired Learning, Computation and Recognition   |c Licheng Jiao, Ronghua Shang, Fang Liu, [et autre]. 
264 1 |a San Diego, CA :  |b Elsevier Science. 
264 2 |a Paris :  |b Cyberlibris,  |c 2020. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780128204047.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Brain and Nature-Inspired Learning, Computation and Recognition presents a systematic analysis of neural networks, natural computing, machine learning and compression, algorithms and applications inspired by the brain and biological mechanisms found in nature. Sections cover new developments and main applications, algorithms and simulations. Developments in brain and nature-inspired learning have promoted interest in image processing, clustering problems, change detection, control theory and other disciplines. The book discusses the main problems and applications pertaining to bio-inspired computation and recognition, introducing algorithm implementation, model simulation, and practical application of parameter setting. Readers will find solutions to problems in computation and recognition, particularly neural networks, natural computing, machine learning and compressed sensing. This volume offers a comprehensive and well-structured introduction to brain and nature-inspired learning, computation, and recognition. Presents an invaluable systematic introduction to brain and nature-inspired learning, computation and recognition Describes the biological mechanisms, mathematical analyses and scientific principles behind brain and nature-inspired learning, calculation and recognition Systematically analyzes neural networks, natural computing, machine learning and compression, algorithms and applications inspired by the brain and biological mechanisms found in nature Discusses the theory and application of algorithms and neural networks, natural computing, machine learning and compression perception 
700 1 |a Shang, Ronghua.  |4 aut.  |e Auteur 
700 1 |a Liu, Fang.  |4 aut.  |e Auteur 
700 1 |a Zhang, Weitong.  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955480  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280310498