Adversial robustness for machine learning

Enregistré dans:
Détails bibliographiques
Auteur principal: Chen, Pin-Yu (19..-). (Auteur)
Autres auteurs: Hsieh, Cho-Jui (19..-). (Auteur)
Support: E-Book
Langue: Anglais
Publié: London ; San Diego (Calif.) : Elsevier : Academic Press.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and verification. Sections cover adversarial attack, verification and defense, mainly focusing on image classification applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems
Accès en ligne: Accès à l'E-book
LEADER 02998cmm a2200469 i 4500
001 ebook-280307039
005 20240924015209.0
007 cu|uuu---uuuuu
008 240917s2022||||us ||||g|||| ||||||eng d
020 |a 9780128242575 
035 |a (OCoLC)1456999530 
035 |a FRCYB88955559 
035 |a FRCYB084688955559 
035 |a FRCYB087088955559 
035 |a FRCYB087588955559 
035 |a FRCYB097088955559 
035 |a FRCYB24788955559 
035 |a FRCYB24888955559 
035 |a FRCYB26088955559 
035 |a FRCYB29388955559 
035 |a FRCYB56788955559 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)272141003  |1 http://www.idref.fr/272141003/id  |a Chen, Pin-Yu  |d (19..-).  |4 aut.  |e Auteur 
245 1 0 |a Adversial robustness for machine learning   |c Pin-Yu Chen,... Cho-Jui Hsieh,.... 
264 1 |a London ;  |a San Diego (Calif.) :  |b Elsevier :  |b Academic Press. 
264 2 |a Paris :  |b Cyberlibris,  |c 2022. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780128242575.jpg). 
504 |a Bibliogr. p. 251-271. Index. 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and verification. Sections cover adversarial attack, verification and defense, mainly focusing on image classification applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research. In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy machine learning. While machine learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems 
650 7 |0 (IdRef)027940373  |1 http://www.idref.fr/027940373/id  |a Apprentissage automatique.  |2 ram 
700 1 |0 (IdRef)272141038  |1 http://www.idref.fr/272141038/id  |a Hsieh, Cho-Jui  |d (19..-).  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88955559  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 280307039