Machine Learning with Python : Unlocking AI Potential with Python and Machine Learning

Enregistré dans:
Détails bibliographiques
Auteur principal: Theobald, Oliver. (Auteur)
Support: E-Book
Langue: Anglais
Publié: Birmingham : Packt Publishing.
Autres localisations: Voir dans le Sudoc
Résumé: Unlock the secrets of data science and machine learning with our comprehensive Python course, designed to take you from basics to complex algorithms effortlessly. Key Features : Navigate through Python's machine learning libraries effectively. Learn exploratory data analysis and data scrubbing techniques. Design and evaluate machine learning models with precision. Book Description : The course starts by setting the foundation with an introduction to machine learning, Python, and essential libraries, ensuring you grasp the basics before diving deeper. It then progresses through exploratory data analysis, data scrubbing, and pre-model algorithms, equipping you with the skills to understand and prepare your data for modeling. The journey continues with detailed walkthroughs on creating, evaluating, and optimizing machine learning models, covering key algorithms such as linear and logistic regression, support vector machines, k-nearest neighbors, and tree-based methods. Each section is designed to build upon the previous, reinforcing learning and application of concepts. Wrapping up, the course introduces the next steps, including an introduction to Python for newcomers, ensuring a comprehensive understanding of machine learning applications. What you will learn : Analyze datasets for insightsScrub data for model readinessUnderstand key ML algorithms. Design and validate models. Apply Linear and Logistic Regression. Utilize K-Nearest Neighbors and SVMs. Who this book is for : This course is ideal for aspiring data scientists and professionals looking to integrate machine learning into their workflows. A basic understanding of Python and statistics is beneficial
Accès en ligne: Accès à l'E-book
LEADER 03343nmm a2200469 i 4500
001 ebook-278676022
005 20240606105718.0
007 cu|uuu---uuuuu
008 240606s2024||||uk ||||g|||| ||||||eng d
020 |a 9781835462072 
035 |a (OCoLC)1439290318 
035 |a FRCYB88954815 
035 |a FRCYB26088954815 
035 |a FRCYB19188954815 
035 |a FRCYB27488954815 
035 |a FRCYB24788954815 
035 |a FRCYB24888954815 
035 |a FRCYB29388954815 
035 |a FRCYB084688954815 
035 |a FRCYB085688954815 
035 |a FRCYB087588954815 
035 |a FRCYB56788954815 
035 |a FRCYB097088954815 
035 |a FRCYB087088954815 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)231677154  |1 http://www.idref.fr/231677154/id  |a Theobald, Oliver.  |4 aut.  |e Auteur 
245 1 0 |a Machine Learning with Python :  |b Unlocking AI Potential with Python and Machine Learning   |c Oliver Theobald. 
264 1 |a Birmingham :  |b Packt Publishing. 
264 2 |a Paris :  |b Cyberlibris,  |c 2024. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9781835462072.jpg). 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Unlock the secrets of data science and machine learning with our comprehensive Python course, designed to take you from basics to complex algorithms effortlessly. Key Features : Navigate through Python's machine learning libraries effectively. Learn exploratory data analysis and data scrubbing techniques. Design and evaluate machine learning models with precision. Book Description : The course starts by setting the foundation with an introduction to machine learning, Python, and essential libraries, ensuring you grasp the basics before diving deeper. It then progresses through exploratory data analysis, data scrubbing, and pre-model algorithms, equipping you with the skills to understand and prepare your data for modeling. The journey continues with detailed walkthroughs on creating, evaluating, and optimizing machine learning models, covering key algorithms such as linear and logistic regression, support vector machines, k-nearest neighbors, and tree-based methods. Each section is designed to build upon the previous, reinforcing learning and application of concepts. Wrapping up, the course introduces the next steps, including an introduction to Python for newcomers, ensuring a comprehensive understanding of machine learning applications. What you will learn : Analyze datasets for insightsScrub data for model readinessUnderstand key ML algorithms. Design and validate models. Apply Linear and Logistic Regression. Utilize K-Nearest Neighbors and SVMs. Who this book is for : This course is ideal for aspiring data scientists and professionals looking to integrate machine learning into their workflows. A basic understanding of Python and statistics is beneficial 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88954815  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 278676022