Practical machine learning in R

Enregistré dans:
Détails bibliographiques
Auteur principal: Nwanganga, Fred (19..-....). (Auteur)
Autres auteurs: Chapple, Mike (19..-....). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Indianapolis, Ind : John Wiley & Sons.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction ; - Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering ; - Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques ; - Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost. Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field
Accès en ligne: Accès à l'E-book
LEADER 03788cmm a2200505 i 4500
001 ebook-272710393
005 20231111020329.0
007 cu|uuu---uuuuu
008 231020s2020||||us ||||g|||| ||||||eng d
020 |a 9781119591573 
035 |a (OCoLC)1408799975 
035 |a FRCYB88945291 
035 |a FRCYB084688945291 
035 |a FRCYB087088945291 
035 |a FRCYB087588945291 
035 |a FRCYB24788945291 
035 |a FRCYB24888945291 
035 |a FRCYB26088945291 
035 |a FRCYB29388945291 
035 |a FRCYB56788945291 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
082 0 |a 006.31  |2 23 
100 1 |0 (IdRef)255363087  |1 http://www.idref.fr/255363087/id  |a Nwanganga, Fred  |d (19..-....).  |4 aut.  |e Auteur 
245 1 0 |a Practical machine learning in R   |c Fred Nwanganga, Mike Chapple. 
264 1 |a Indianapolis, Ind :  |b John Wiley & Sons. 
264 2 |a Paris :  |b Cyberlibris,  |c 2020. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9781119591573.jpg). 
504 |a Notes bibliogr. en fin de chapitres. Index. 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Machine learning--a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions--allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction ; - Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering ; - Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques ; - Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost. Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field 
630 0 7 |0 (IdRef)08080859X  |1 http://www.idref.fr/08080859X/id  |a R  |g logiciel.  |2 ram 
650 7 |0 (IdRef)027940373  |1 http://www.idref.fr/027940373/id  |a Apprentissage automatique.  |2 ram 
650 0 |a Machine learning.  |2 lc 
650 0 |a R (Computer program language).  |2 lc 
700 1 |0 (IdRef)153222050  |1 http://www.idref.fr/153222050/id  |a Chapple, Mike  |d (19..-....).  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88945291  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 272710393