Machine Learning in Production : Master the art of delivering robust Machine Learning solutions with MLOps
Enregistré dans:
Auteur principal: | Pote, Suhas. (Auteur) |
---|---|
Support: | E-Book |
Langue: | Anglais |
Publié: |
New Delhi :
BPB Publications.
|
Autres localisations: | Voir dans le Sudoc |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Machine Learning Engineering on AWS : Build, scale, and secure machine learning systems and MLOps pipelines in production
par: Lat, Joshua Arvin.
Publié: 2022 -
Mastering machine learning with scikit-learn : learning to implement and evaluate machine learning solutions with scikit-learn
par: Hackeling, Gavin.
Publié: 2017 -
Operationalizing Machine Learning Pipelines : Building Reusable and Reproducible Machine Learning Pipelines Using MLOps
par: Pandey, Vishwajyoti.
Publié: 2022 -
Adversial robustness for machine learning
par: Chen, Pin-Yu (19..-). -
Machine Learning Engineering with Python : Manage the lifecycle of machine learning models using MLOps with practical examples
par: Mcmahon, Andrew P..