Operationalizing Machine Learning Pipelines : Building Reusable and Reproducible Machine Learning Pipelines Using MLOps
Enregistré dans:
Auteur principal: | Pandey, Vishwajyoti. (Auteur) |
---|---|
Autres auteurs: | Bengani, Shaleen. (Auteur) |
Support: | E-Book |
Langue: | Anglais |
Publié: |
New Delhi :
BPB Publications,
2022.
|
Autres localisations: | Voir dans le Sudoc |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Build, train, and deploy end-to-end machine learning and deep learning pipelines
par: Kolodiazhnyi, Kirill.
Publié: 2020 -
Machine Learning Engineering on AWS : Build, scale, and secure machine learning systems and MLOps pipelines in production
par: Lat, Joshua Arvin.
Publié: 2022 -
Building ETL Pipelines with Python : Create and deploy enterprise-ready ETL pipelines by employing modern methods
par: Pandey, Brij Kishore. -
Machine Learning and Deep Learning Algorithms : Tools and Techniques Using MATLAB and Python
par: Kumar Pandey, Abhishek. -
CICD Pipeline with Docker and Jenkins : Learn How to Build and Manage Your CICD Pipelines Effectively
par: Rawat, Sandeep.