La data science pour modéliser les systèmes complexes : optimiser la prédiction, l'estimation et l'interprétation

Enregistré dans:
Détails bibliographiques
Auteur principal: Chautard, Alain (19..-....). (Auteur)
Support: E-Book
Langue: Français
Publié: Malakoff : Dunod, 2022.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: "La data science est devenue un outil de prévision et d'aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus. Toutefois, son application à des systèmes complexes exige de dépasser les méthodes linéaires de modélisation généralement appliquées. En effet, si ces méthodes fonctionnent dans la plupart des environnements, elles présentent d'importants biais dès lors que l'on a affaire à des systèmes complexes (météorologie, physique non linéaire, économétrie, finance, etc.). En s'appuyant sur trois cas concrets représentatifs (environnement physique, marchés financiers, gestion de projet), cet ouvrage illustre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d'estimation et d'interprétation. Il offre une réflexion globale sur les spécificités des systèmes complexes ainsi que des outils concrets pour mieux les interpréter. Points forts : un ouvrage s'attachant aux systèmes complexes et non linéaires, plus difficiles à modéliser. Des méthodes de modélisation permettant une réduction des coûts et une augmentation de la robustesse des résultat : une approche transverse de la data science (physique, ingénierie, économie, sciences sociales...). Contenu de l'ouvrage : complexité et système complexe. Méthode d'approche systémique. Modélisation d'environnement physique. Modèle comportemental des marchés financiers. Modèle statistique de la réponse à appel d'offres et de la gestion de projets."
Accès en ligne: Accès à l'E-book
+ d'infos
Résumé:"La data science est devenue un outil de prévision et d'aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus. Toutefois, son application à des systèmes complexes exige de dépasser les méthodes linéaires de modélisation généralement appliquées. En effet, si ces méthodes fonctionnent dans la plupart des environnements, elles présentent d'importants biais dès lors que l'on a affaire à des systèmes complexes (météorologie, physique non linéaire, économétrie, finance, etc.). En s'appuyant sur trois cas concrets représentatifs (environnement physique, marchés financiers, gestion de projet), cet ouvrage illustre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d'estimation et d'interprétation. Il offre une réflexion globale sur les spécificités des systèmes complexes ainsi que des outils concrets pour mieux les interpréter. Points forts : un ouvrage s'attachant aux systèmes complexes et non linéaires, plus difficiles à modéliser. Des méthodes de modélisation permettant une réduction des coûts et une augmentation de la robustesse des résultat : une approche transverse de la data science (physique, ingénierie, économie, sciences sociales...). Contenu de l'ouvrage : complexité et système complexe. Méthode d'approche systémique. Modélisation d'environnement physique. Modèle comportemental des marchés financiers. Modèle statistique de la réponse à appel d'offres et de la gestion de projets."
Description:Couverture (https://static2.cyberlibris.com/books_upload/136pix/9782100849376.jpg).
Titre provenant de la page de titre du document numérique.
La pagination de l'édition imprimée correspondante est de 218 p.
Support:Configuration requise : navigateur internet.
Bibliographie:Bibliogr. p. 203-207. Index.
ISBN:9782100849376
Accès:L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement