Applied Machine Learning Explainability Techniques : Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more
Enregistré dans:
Auteur principal: | Bhattacharya, Aditya. (Auteur) |
---|---|
Support: | E-Book |
Langue: | Anglais |
Publié: |
Birmingham :
Packt Publishing,
2022.
|
Autres localisations: | Voir dans le Sudoc |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Hands-On Explainable AI (XAI) with Python : Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps
par: Rothman, Denis.
Publié: 2020 -
Applied Machine Learning Solutions with Python : Production-ready ML Projects Using Cutting-edge Libraries and Powerful Statistical Techniques (English Edition)
par: Bhatta, Siddhanta. -
Legal translation explained
par: Alcaraz Varo, Enrique, 1940-
Publié: 2002 -
Conference interpreting explained
par: Jones, Roderick.
Publié: 1998 -
TCPIP Clearly Explained
par: Loshin, Pete.