Practical Deep Learning at Scale with MLflow : Bridge the gap between offline experimentation and online production
Enregistré dans:
Auteur principal: | Liu, Yong. (Auteur) |
---|---|
Autres auteurs: | Zaharia, Matei. (Préface) |
Support: | E-Book |
Langue: | Anglais |
Publié: |
Birmingham :
Packt Publishing,
2022.
|
Autres localisations: | Voir dans le Sudoc |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Machine Learning Engineering with MLflow : Manage the end-to-end machine learning life cycle with MLflow
par: Lauchande, Natu.
Publié: 2021 -
Deep learning with Hadoop : build, implement and scale distributed deep learning models for large-scale datasets
par: Dev, Dipayan.
Publié: 2017 -
Practical Mathematics for AI and Deep Learning : A Concise yet In-Depth Guide on Fundamentals of Computer Vision, NLP, Complex Deep Neural Networks and Machine Learning (English Edition)
par: Ghosh, Tamoghna. -
Deep learning : practical neural networks with Java
par: Sugomori, Yusuke.
Publié: 2017 -
R deep learning projects : master the techniques to design and develop neural network models in R
par: Liu, Yuxi (Hayden).
Publié: 2018