Machine learning for planetary science

Enregistré dans:
Détails bibliographiques
Auteur principal: Helbert, Joern. (Éditeur scientifique)
Autres auteurs: D'Amore, Mario. (Éditeur scientifique), Aye, Michael).
Support: E-Book
Langue: Anglais
Publié: Amsterdam : Elsevier, 2022.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Machine learning for planetary science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation.
Accès en ligne: Accès à l'E-book
LEADER 04290cmm a2200613 i 4500
001 ebook-263621588
005 20240116111509.0
007 cu|uuu---uuuuu
008 220719s2022||||ne ||||g|||| ||||||eng d
020 |a 9780128187227 
024 7 |a 10.1016/c2018-0-04220-6  |2 DOI 
035 |a (OCoLC)1336700556 
035 |a FRCYB88930838 
035 |a FRCYB14088930838 
035 |a FRCYB19188930838 
035 |a FRCYB26088930838 
035 |a FRCYB26888930838 
035 |a FRCYB29388930838 
035 |a FRCYB29588930838 
035 |a FRCYB55488930838 
035 |a FRCYB55988930838 
035 |a FRCYB56788930838 
035 |a FRCYB084688930838 
035 |a FRCYB087088930838 
035 |a FRCYB087588930838 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
082 0 |a 523.4  |2 23e éd 
100 1 |0 (IdRef)262030853  |1 http://www.idref.fr/262030853/id  |a Helbert, Joern.  |4 edt.  |e Éditeur scientifique 
245 1 0 |a Machine learning for planetary science   |c edited by Joern Helbert, Mario D'Amore, Michael Aye, Hannah Kerner. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2022. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Couverture (https://static2.cyberlibris.com/books_upload/136pix/9780128187227.jpg). 
500 |a Titre provenant de la page de titre du document numérique. 
500 |a La pagination de l'édition imprimée correspondante est de 292 p. 
504 |a Bibliogr. en fin de chapitres. Index. 
506 |a L'accès en ligne est réservé aux établissements ou bibliothèques ayant souscrit l'abonnement  |e Cyberlibris 
520 |a Machine learning for planetary science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation.  |c 4e de couverture de l'édition imprimée. 
538 |a Configuration requise : navigateur internet. 
559 2 |b 1. Introduction to machine learning  |b 2. The new and unique challenges of planetary missions  |b 3. Finding and reading planetary data  |b 4. Introduction to the Python Hyperspectral Analysis Tool (PyHAT )  |b 5. Tutorial : how to access, process, and label PDS image data for machine learning  |b 6. Planetary image inpainting by learning mode-specific regression models  |b 7. Automated surface mapping via unsupervised learning and classification of Mercury Visible-Near-Infrared reflectance spectra  |b 8. Mapping storms on Saturn  |b 9. Machine learning for planetary rovers  |b 10. Combining machine-learned regression models with Bayesian inference to interpret remote sensing data 
650 7 |0 (IdRef)027940373  |1 http://www.idref.fr/027940373/id  |a Apprentissage automatique.  |2 ram 
650 7 |0 (IdRef)029480744  |1 http://www.idref.fr/029480744/id  |a Planétologie  |0 (IdRef)027234886  |1 http://www.idref.fr/027234886/id  |x Informatique.  |2 ram 
650 0 |a Machine learning.  |2 lc 
650 0 |a Planetary science  |x Data processing.  |2 lc 
700 1 |0 (IdRef)262030934  |1 http://www.idref.fr/262030934/id  |a D'Amore, Mario.  |4 edt.  |e Éditeur scientifique 
700 1 |0 (IdRef)262030993  |1 http://www.idref.fr/262030993/id  |a Aye, Michael).  |4 edt.  |e Éditeur scientifique 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88930838  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 263621588