Optimizing Databricks Workloads : Harness the power of Apache Spark in Azure and maximize the performance of modern big data workloads
Enregistré dans:
Auteur principal: | Kala, Anirudh. (Auteur) |
---|---|
Autres auteurs: | Bhatnagar, Anshul. (Auteur), Sarbahi, Sarthak. |
Support: | E-Book |
Langue: | Anglais |
Publié: |
Birmingham :
Packt Publishing,
2021.
|
Autres localisations: | Voir dans le Sudoc |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Optimizing Microsoft Azure Workloads : Leverage the Well-Architected Framework to boost performance, scalability, and cost efficiency
par: Skaria, Rithin (19..-....). -
Data Engineering with Databricks Cookbook : Build effective data and AI solutions using Apache Spark, Databricks, and Delta Lake
par: Chadha, Pulkit. -
Azure Databricks Cookbook : Accelerate and scale real-time analytics solutions using the Apache Spark-based analytics service
par: Raj, Phani. -
Querying Databricks with Spark SQL : Leverage SQL to query and analyze Big Data for insights (English Edition)
par: Aspin, Adam. -
Intelligent Workloads at the Edge : Deliver cyber-physical outcomes with data and machine learning using AWS IoT Greengrass
par: Mitra, Indraneel.
Publié: 2022