Engineering MLOps : Rapidly build, test, and manage production-ready machine learning life cycles at scale
Enregistré dans:
Auteur principal: | Raj, Emmanuel. (Auteur) |
---|---|
Support: | E-Book |
Langue: | Anglais |
Publié: |
[Lieu de publication inconnu] :
Packt Publishing,
2021.
|
Autres localisations: | Voir dans le Sudoc |
Accès en ligne: | Accès à l'E-book |
Documents similaires
-
Machine Learning Engineering on AWS : Build, scale, and secure machine learning systems and MLOps pipelines in production
par: Lat, Joshua Arvin.
Publié: 2022 -
Mastering MLOps Architecture: From Code to Deployment : Manage the production cycle of continual learning ML models with MLOps
par: Jhajj, Raman. -
MLOps with Red Hat OpenShift : A cloud-native approach to machine learning operations
par: Brigoli, Ross. -
Machine Learning Engineering with Python : Manage the lifecycle of machine learning models using MLOps with practical examples
par: Mcmahon, Andrew P.. -
Machine Learning Engineering with MLflow : Manage the end-to-end machine learning life cycle with MLflow
par: Lauchande, Natu.
Publié: 2021