Data science par la pratique : fondamentaux avec Python

Enregistré dans:
Détails bibliographiques
Auteur principal: Grus, Joel (19..-....). (Auteur)
Autres auteurs: Kottelanne, Tristan. (Traduction)
Support: E-Book
Langue: Français
Publié: Paris : Eyrolles, 2020.
Paris : Éditions Eyrolles.
Édition: 2e édition.
Collection: Blanche
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: "Un ouvrage de référence pour les (futurs) data scientists. Les bibliothèques, les frameworks, les modules et les boîtes à outils sont parfaits pour faire de la data science. Ils sont aussi un bon moyen de plonger dans cette discipline sans la comprendre. Dans cet ouvrage, vous apprendrez comment fonctionnent les outils et algorithmes les plus fondamentaux de la data science, en les réalisant à partir de zéro. Si vous êtes fort en maths et que vous connaissez la programmation, l'auteur, Joel Grus, vous aidera à vous familiariser avec les maths et les statistiques qui sont au coeur de la data science et avec les compétences informatiques indispensables pour démarrer comme data scientist. La profusion des données d'aujourd'hui contient les réponses aux questions que personne n'a encore pensé à poser. Ce livre vous enseigne comment obtenir ces réponses. La deuxième édition, revue et augmentée, de cet ouvrage comporte des codes et exemples associés entièrement réécrits en Python 3.6 et intègre de nouveaux chapitres sur l'apprentissage profond (deep learning), les statistiques et le traitement en langage naturel. ¤ Suivez un cours accéléré de Python. ¤ Apprenez les fondamentaux de l'algèbre linéaire, des statistiques et des probabilités, et comprenez comment et quand les utiliser en data science. ¤ Collectez, explorez, nettoyez, bricolez et manipulez les données. ¤ Plongez dans les bases de l'apprentissage automatique. ¤ Implémentez des modèles comme les k plus proches voisins, la classification naïve bayésienne, les régressions linéaire ou logistique, les arbres de décision, les réseaux neuronaux et le clustering. ¤ Explorez les systèmes de recommandation, le traitement du langage naturel, l'analyse de réseau, MapReduce et les bases de données. À qui s'adresse cet ouvrage ? ¤ Aux développeurs, statisticiens, étudiants et chefs de projet ayant à résoudre des problèmes de data science. ¤ Aux data scientists, mais aussi à toute personne curieuse d'avoir une vue d'ensemble de l'état de l'art de ce métier du futur
Accès en ligne: Accès à l'E-book
Lien: Collection principale: Blanche