|
|
|
|
LEADER |
02101cmm a2200577 i 4500 |
001 |
ebook-242831702 |
005 |
20240116110800.0 |
007 |
cu|uuu---uuuuu |
008 |
200306s2019||||uk ||||g|||| ||||||eng d |
020 |
|
|
|a 9781789534283
|
035 |
|
|
|a (OCoLC)1153267377
|
035 |
|
|
|a FRCYB88877970
|
035 |
|
|
|a FRCYB08288877970
|
035 |
|
|
|a FRCYB09888877970
|
035 |
|
|
|a FRCYB14088877970
|
035 |
|
|
|a FRCYB17088877970
|
035 |
|
|
|a FRCYB19188877970
|
035 |
|
|
|a FRCYB20188877970
|
035 |
|
|
|a FRCYB24288877970
|
035 |
|
|
|a FRCYB24788877970
|
035 |
|
|
|a FRCYB24888877970
|
035 |
|
|
|a FRCYB26088877970
|
035 |
|
|
|a FRCYB26888877970
|
035 |
|
|
|a FRCYB27488877970
|
035 |
|
|
|a FRCYB29388877970
|
035 |
|
|
|a FRCYB29588877970
|
035 |
|
|
|a FRCYB55488877970
|
035 |
|
|
|a FRCYB55988877970
|
035 |
|
|
|a FRCYB56788877970
|
035 |
|
|
|a FRCYB57188877970
|
035 |
|
|
|a FRCYB63288877970
|
040 |
|
|
|a ABES
|b fre
|e AFNOR
|
041 |
0 |
|
|a eng
|2 639-2
|
100 |
1 |
|
|a Hany, John.
|4 aut.
|e Auteur
|
245 |
1 |
0 |
|a Hands-On Generative Adversarial Networks with PyTorch 1.x :
|b Implement next-generation neural networks to build powerful GAN models using Python
|c John Hany, Greg Walters.
|
264 |
|
1 |
|a Birmingham :
|b Packt Publishing,
|c 2019.
|
336 |
|
|
|b txt
|2 rdacontent
|
337 |
|
|
|b c
|2 rdamedia
|
337 |
|
|
|b b
|2 isbdmedia
|
338 |
|
|
|b ceb
|2 RDAfrCarrier
|
500 |
|
|
|a Couverture (https://static.cyberlibris.com/books_upload/136pix/9781789534283.jpg).
|
500 |
|
|
|a Titre provenant de la page de titre du document numérique.
|
500 |
|
|
|a La pagination de l'édition imprimée correspondante est de 301 p.
|
506 |
|
|
|a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition
|
538 |
|
|
|a Configuration requise : navigateur internet.
|
700 |
1 |
|
|a Walters, Greg.
|4 aut.
|e Auteur
|
856 |
|
|
|q HTML
|u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88877970
|w Données éditeur
|z Accès à l'E-book
|
886 |
2 |
|
|2 unimarc
|a 181
|a i#
|b xxxe##
|
993 |
|
|
|a E-Book
|
994 |
|
|
|a BNUM
|
995 |
|
|
|a 242831702
|