Reverse mathematics : proofs from the inside out

Enregistré dans:
Détails bibliographiques
Auteur principal: Stillwell, John (1942-....; Professeur de mathématiques). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Princeton, NJ : Princeton University Press, [2018].
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis-finding the "right axioms" to prove fundamental theorems-and giving a novel approach to logic.Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the "right axiom" to prove it.By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics
Accès en ligne: Accès à l'E-book
LEADER 04073cmm a2200685 i 4500
001 ebook-230505031
005 20220530203856.0
007 cr|uuu---uuuuu
008 181001q2018uuuugw ||||f|||d ||||||eng d
020 |a 9781400889037 
024 7 |a 10.1515/9781400889037  |2 DOI 
035 |a (OCoLC)1021400244 
035 |a DG_EB_9781400889037 
035 |a (DE-B1597)501155 
035 |a FRCYB88867033 
035 |a FRCYB07488867033 
035 |a FRCYB08288867033 
035 |a FRCYB12688867033 
035 |a FRCYB14088867033 
035 |a FRCYB16788867033 
035 |a FRCYB24288867033 
035 |a FRCYB24788867033 
035 |a FRCYB25688867033 
035 |a FRCYB26088867033 
035 |a FRCYB26888867033 
035 |a FRCYB29388867033 
035 |a FRCYB29588867033 
035 |a FRCYB55488867033 
035 |a FRCYB55988867033 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a gw  |a us 
050 4 |a QA9.25 
050 4 |a MAT000000 
050 4 |a MAT015000 
050 4 |a MAT018000 
050 4 |a SCI034000 
082 0 |a 511.3  |2 23 
084 |a 511.3 
100 1 |0 (IdRef)031617956  |1 http://www.idref.fr/031617956/id  |a Stillwell, John  |d (1942-....;   |c Professeur de mathématiques).  |4 aut.  |e Auteur 
245 1 0 |a Reverse mathematics :  |b proofs from the inside out   |c John Stillwell. 
256 |a Données textuelles. 
264 1 |a Princeton, NJ :  |b Princeton University Press,  |c [2018]. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 29. Aug 2018) 
500 |a La pagination de l'édition imprimée correspondante est de 198 p. 
504 |a Bibliogr. Index. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis-finding the "right axioms" to prove fundamental theorems-and giving a novel approach to logic.Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the "right axiom" to prove it.By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a Reverse mathematics.  |2 lc 
650 7 |0 (IdRef)20367586X  |1 http://www.idref.fr/20367586X/id  |a Mathématiques à rebours.  |2 ram 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88867033  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 230505031