R pour les data sciences : importer, classer, transformer, visualiser et modéliser les données

Enregistré dans:
Détails bibliographiques
Auteur principal: Grolemund, Garrett (19..-....). (Auteur)
Autres auteurs: Wickham, Hadley (19..-....). (Auteur)
Support: E-Book
Langue: Français
Publié: Paris : Eyrolles, 2018.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: La 4e de couv. indique : "R : le langage de référence pour le big data. Les data sciences constituent une discipline fascinante, qui vous servira à transformer des données brutes en idées et connaissances aisément compréhensibles. L'objectif de ce livre est de vous aider à maîtriser les outils essentiels qui vous permettront d'utiliser R dans la pratique des data sciences. Après l'avoir lu, vous pourrez faire face à la plupart des situations que vous rencontrerez dans vos projets, en exploitant au mieux les fonctionnalités de R. Mais avant de devenir un expert en R, vous devrez tout d'abord importer vos données, c'est-à-dire les lire, en général depuis un fichier, une base de données ou une API web. et les charger dans un cadre de données dans R. Si vous ne pouvez pas transférer vos données dans R, vous ne pourrez pas les analyser ! Une fois vos données importées, vous gagnerez beaucoup à les ranger. Une fois vos données rangées, vous passerez bien souvent par une étape de transformation. Une fois vos données rangées avec les variables dont vous avez besoin, la génération de connaissances reposera principalement sur deux moteurs : la visualisation et la modélisation. Leurs forces et faiblesses sont complémentaires, et toute bonne analyse doit tenir compte des deux. Inutile d'être un programmeur expert pour être un bon analyste de données, mais apprendre à programmer plus efficacement vous permettra d'automatiser des tâches courantes et de résoudre plus facilement de nouveaux problèmes."
Accès en ligne: Accès à l'E-book
+ d'infos
Résumé:La 4e de couv. indique : "R : le langage de référence pour le big data. Les data sciences constituent une discipline fascinante, qui vous servira à transformer des données brutes en idées et connaissances aisément compréhensibles. L'objectif de ce livre est de vous aider à maîtriser les outils essentiels qui vous permettront d'utiliser R dans la pratique des data sciences. Après l'avoir lu, vous pourrez faire face à la plupart des situations que vous rencontrerez dans vos projets, en exploitant au mieux les fonctionnalités de R. Mais avant de devenir un expert en R, vous devrez tout d'abord importer vos données, c'est-à-dire les lire, en général depuis un fichier, une base de données ou une API web. et les charger dans un cadre de données dans R. Si vous ne pouvez pas transférer vos données dans R, vous ne pourrez pas les analyser ! Une fois vos données importées, vous gagnerez beaucoup à les ranger. Une fois vos données rangées, vous passerez bien souvent par une étape de transformation. Une fois vos données rangées avec les variables dont vous avez besoin, la génération de connaissances reposera principalement sur deux moteurs : la visualisation et la modélisation. Leurs forces et faiblesses sont complémentaires, et toute bonne analyse doit tenir compte des deux. Inutile d'être un programmeur expert pour être un bon analyste de données, mais apprendre à programmer plus efficacement vous permettra d'automatiser des tâches courantes et de résoudre plus facilement de nouveaux problèmes."
Description:Titre provenant de la page de titre du document numérique.
La pagination de l'édition imprimée correspondante est de 478 p.
Support:Configuration requise : navigateur internet; lecteur de fichier PDF.
ISBN:9782212771312
2212771312
Accès:L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition