Data Analysis for Scientists and Engineers

Enregistré dans:
Détails bibliographiques
Auteur principal: Robinson, Edward L.. (Auteur)
Support: E-Book
Langue: Anglais
Publié: Princeton, NJ : Princeton University Press, [2017].
Princeton ; Oxford : Princeton university press, 2016.
Édition: Core Textbook.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Data Analysis for Scientists and Engineers is a modern, graduate-level text on data analysis techniques for physical science and engineering students as well as working scientists and engineers. Edward Robinson emphasizes the principles behind various techniques so that practitioners can adapt them to their own problems, or develop new techniques when necessary. Robinson divides the book into three sections. The first section covers basic concepts in probability and includes a chapter on Monte Carlo methods with an extended discussion of Markov chain Monte Carlo sampling. The second section introduces statistics and then develops tools for fitting models to data, comparing and contrasting techniques from both frequentist and Bayesian perspectives. The final section is devoted to methods for analyzing sequences of data, such as correlation functions, periodograms, and image reconstruction. While it goes beyond elementary statistics, the text is self-contained and accessible to readers from a wide variety of backgrounds. Specialized mathematical topics are included in an appendix. Based on a graduate course on data analysis that the author has taught for many years, and couched in the looser, workaday language of scientists and engineers who wrestle directly with data, this book is ideal for courses on data analysis and a valuable resource for students, instructors, and practitioners in the physical sciences and engineering. In-depth discussion of data analysis for scientists and engineers Coverage of both frequentist and Bayesian approaches to data analysis Extensive look at analysis techniques for time-series data and images Detailed exploration of linear and nonlinear modeling of data Emphasis on error analysis Instructor's manual (available only to professors)
Accès en ligne: Accès à l'E-book
LEADER 04044cmm a2200625 i 4500
001 ebook-203522893
005 20231129185710.0
007 cr|uuu---uuuuu
008 170728q2017uuuuus ||||||||d |||||||eng d
020 |a 9781400883066 
024 7 |a 10.1515/9781400883066  |2 DOI 
035 |a (OCoLC)1145891192 
035 |a DG_EB_9781400883066 
035 |a (DE-B1597)479633 
035 |a FRCYB88875082 
035 |a FRCYB07488875082 
035 |a FRCYB08288875082 
035 |a FRCYB14088875082 
035 |a FRCYB19588875082 
035 |a FRCYB24288875082 
035 |a FRCYB24788875082 
035 |a FRCYB26088875082 
035 |a FRCYB26888875082 
035 |a FRCYB29388875082 
035 |a FRCYB29588875082 
035 |a FRCYB55488875082 
035 |a FRCYB55988875082 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
050 4 |a MAT029000 
050 4 |a SCI040000 
050 4 |a SCI043000 
050 4 |a SCI055000 
050 4 |a TEC000000 
100 1 |0 (IdRef)196986389  |1 http://www.idref.fr/196986389/id  |a Robinson, Edward L..  |4 aut.  |e Auteur 
245 1 0 |a Data Analysis for Scientists and Engineers   |c Edward L. Robinson. 
250 |a Core Textbook. 
256 |a Données textuelles. 
264 1 |a Princeton, NJ :  |b Princeton University Press,  |c [2017]. 
264 1 |a Princeton ;  |a Oxford :  |b Princeton university press,  |c 2016. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed Feb. 24, 2017) 
500 |a La pagination de l'édition imprimée correspondante est de 409 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Data Analysis for Scientists and Engineers is a modern, graduate-level text on data analysis techniques for physical science and engineering students as well as working scientists and engineers. Edward Robinson emphasizes the principles behind various techniques so that practitioners can adapt them to their own problems, or develop new techniques when necessary. Robinson divides the book into three sections. The first section covers basic concepts in probability and includes a chapter on Monte Carlo methods with an extended discussion of Markov chain Monte Carlo sampling. The second section introduces statistics and then develops tools for fitting models to data, comparing and contrasting techniques from both frequentist and Bayesian perspectives. The final section is devoted to methods for analyzing sequences of data, such as correlation functions, periodograms, and image reconstruction. While it goes beyond elementary statistics, the text is self-contained and accessible to readers from a wide variety of backgrounds. Specialized mathematical topics are included in an appendix. Based on a graduate course on data analysis that the author has taught for many years, and couched in the looser, workaday language of scientists and engineers who wrestle directly with data, this book is ideal for courses on data analysis and a valuable resource for students, instructors, and practitioners in the physical sciences and engineering. In-depth discussion of data analysis for scientists and engineers Coverage of both frequentist and Bayesian approaches to data analysis Extensive look at analysis techniques for time-series data and images Detailed exploration of linear and nonlinear modeling of data Emphasis on error analysis Instructor's manual (available only to professors) 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 7 |0 (IdRef)02734004X  |1 http://www.idref.fr/02734004X/id  |a Analyse des données.  |2 ram 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88875082  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 203522893