Ecological forecasting

Enregistré dans:
Détails bibliographiques
Auteur principal: Dietze, Michael C.. (Auteur)
Support: E-Book
Langue: Anglais
Publié: Princeton, NJ : Princeton University Press, [2017].
Autres localisations: Voir dans le Sudoc
Résumé: Ecologists are being asked to respond to unprecedented environmental challenges. How can they provide the best available scientific information about what will happen in the future? Ecological Forecasting is the first book to bring together the concepts and tools needed to make ecology a more predictive science.Ecological Forecasting presents a new way of doing ecology. A closer connection between data and models can help us to project our current understanding of ecological processes into new places and times. This accessible and comprehensive book covers a wealth of topics, including Bayesian calibration and the complexities of real-world data; uncertainty quantification, partitioning, propagation, and analysis; feedbacks from models to measurements; state-space models and data fusion; iterative forecasting and the forecast cycle; and decision support.Features case studies that highlight the advances and opportunities in forecasting across a range of ecological subdisciplines, such as epidemiology, fisheries, endangered species, biodiversity, and the carbon cycle Presents a probabilistic approach to prediction and iteratively updating forecasts based on new dataDescribes statistical and informatics tools for bringing models and data together, with emphasis on:Quantifying and partitioning uncertaintiesDealing with the complexities of real-world dataFeedbacks to identifying data needs, improving models, and decision supportNumerous hands-on activities in R available online
Accès en ligne: Accès à l'E-book
LEADER 03362cmm a2200541 i 4500
001 ebook-201994046
005 20231129184432.0
007 cr|uuu---uuuuu
008 170619q2017uuuugw ||||||||d |||||||eng d
020 |a 9781400885459 
024 7 |a 10.1515/9781400885459  |2 DOI 
035 |a (OCoLC)995179471 
035 |a DG_EB_9781400885459 
035 |a (DE-B1597)479682 
035 |a FRCYB88849597 
035 |a FRCYB07488849597 
035 |a FRCYB08288849597 
035 |a FRCYB14088849597 
035 |a FRCYB24288849597 
035 |a FRCYB24788849597 
035 |a FRCYB26088849597 
035 |a FRCYB26888849597 
035 |a FRCYB29388849597 
035 |a FRCYB29588849597 
035 |a FRCYB55488849597 
035 |a FRCYB55988849597 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
050 4 |a SCI008000 
050 4 |a SCI020000 
100 1 |a Dietze, Michael C..  |4 aut.  |e Auteur 
245 1 0 |a Ecological forecasting   |c Michael C. Dietze. 
256 |a Données textuelles. 
264 1 |a Princeton, NJ :  |b Princeton University Press,  |c [2017]. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Description based on online resource; title from PDF title page (publisher's Web site, viewed May. 17, 2017) 
500 |a La pagination de l'édition imprimée correspondante est de 284 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Ecologists are being asked to respond to unprecedented environmental challenges. How can they provide the best available scientific information about what will happen in the future? Ecological Forecasting is the first book to bring together the concepts and tools needed to make ecology a more predictive science.Ecological Forecasting presents a new way of doing ecology. A closer connection between data and models can help us to project our current understanding of ecological processes into new places and times. This accessible and comprehensive book covers a wealth of topics, including Bayesian calibration and the complexities of real-world data; uncertainty quantification, partitioning, propagation, and analysis; feedbacks from models to measurements; state-space models and data fusion; iterative forecasting and the forecast cycle; and decision support.Features case studies that highlight the advances and opportunities in forecasting across a range of ecological subdisciplines, such as epidemiology, fisheries, endangered species, biodiversity, and the carbon cycle Presents a probabilistic approach to prediction and iteratively updating forecasts based on new dataDescribes statistical and informatics tools for bringing models and data together, with emphasis on:Quantifying and partitioning uncertaintiesDealing with the complexities of real-world dataFeedbacks to identifying data needs, improving models, and decision supportNumerous hands-on activities in R available online 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88849597  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 201994046