|
|
|
|
LEADER |
05854cmm a2200745 i 4500 |
001 |
ebook-200819674 |
005 |
20240321105223.0 |
007 |
cr|cuu---auauu |
008 |
170522t20172017uk ||||f|||d ||||||eng d |
020 |
|
|
|a 1787129039
|
020 |
|
|
|a 9781787129030
|
035 |
|
|
|a (OCoLC)987616110
|
035 |
|
|
|a FRCYB88842775
|
035 |
|
|
|a FRCYB56788842775
|
035 |
|
|
|a FRCYB08288842775
|
035 |
|
|
|a FRCYB09888842775
|
035 |
|
|
|a FRCYB10288842775
|
035 |
|
|
|a FRCYB14088842775
|
035 |
|
|
|a FRCYB17088842775
|
035 |
|
|
|a FRCYB19188842775
|
035 |
|
|
|a FRCYB24288842775
|
035 |
|
|
|a FRCYB24788842775
|
035 |
|
|
|a FRCYB24888842775
|
035 |
|
|
|a FRCYB26088842775
|
035 |
|
|
|a FRCYB26888842775
|
035 |
|
|
|a FRCYB27488842775
|
035 |
|
|
|a FRCYB29388842775
|
035 |
|
|
|a FRCYB29588842775
|
035 |
|
|
|a FRCYB55488842775
|
035 |
|
|
|a FRCYB55988842775
|
035 |
|
|
|a FRCYB04188842775
|
035 |
|
|
|a FRCYB57188842775
|
035 |
|
|
|a FRCYB07488842775
|
040 |
|
|
|a ABES
|b fre
|e AFNOR
|
041 |
0 |
|
|a eng
|2 639-2
|
050 |
|
4 |
|a T55.4-60.8
|
100 |
1 |
|
|0 (IdRef)195490932
|1 http://www.idref.fr/195490932/id
|a Gulli, Antonio.
|4 aut.
|e Auteur
|
245 |
1 |
0 |
|a Deep learning with Keras :
|b implement neural networks with Keras on Theano and TensorFlow
|c Antonio Gulli, Sujit Pal.
|
256 |
|
|
|a Données textuelles.
|
264 |
|
1 |
|a Birmingham :
|b Packt Publishing.
|
264 |
|
4 |
|c C 2017.
|
336 |
|
|
|b txt
|2 rdacontent
|
337 |
|
|
|b c
|2 rdamedia
|
337 |
|
|
|b b
|2 isbdmedia
|
338 |
|
|
|b ceb
|2 RDAfrCarrier
|
500 |
|
|
|a Titre provenant de la p. de titre du document numérisé.
|
500 |
|
|
|a Numérisation de l'édition de : Birmingham : Packt Publishing, cop. 2017.
|
500 |
|
|
|a La pagination de l'édition imprimée correspondante est de 310 p.
|
501 |
|
|
|a Notice rédigée d'après la consultation, 2017-05-22.
|
501 |
|
|
|a L'impression du document génère 310 p.
|
505 |
0 |
|
|a Cover; Copyright; Credits; About the Authors; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Neural Networks Foundations; Perceptron; The first example of Keras code; Multilayer perceptron -- the first example of a network; Problems in training the perceptron and a solution; Activation function -- sigmoid; Activation function -- ReLU; Activation functions; A real example -- recognizing handwritten digits; One-hot encoding -- OHE; Defining a simple neural net in Keras; Running a simple Keras net and establishing a baseline -- Improving the simple net in Keras with hidden layersFurther improving the simple net in Keras with dropout; Testing different optimizers in Keras; Increasing the number of epochs; Controlling the optimizer learning rate; Increasing the number of internal hidden neurons; Increasing the size of batch computation; Summarizing the experiments run for recognizing handwritten charts; Adopting regularization for avoiding overfitting; Hyperparameters tuning; Predicting output; A practical overview of backpropagation; Towards a deep learning approach; Summary; Chapter 2: Keras Installation and API -- Installing KerasStep 1 -- install some useful dependencies; Step 2 -- install Theano; Step 3 -- install TensorFlow; Step 4 -- install Keras; Step 5 -- testing Theano, TensorFlow, and Keras; Configuring Keras; Installing Keras on Docker; Installing Keras on Google Cloud ML; Installing Keras on Amazon AWS; Installing Keras on Microsoft Azure; Keras API; Getting started with Keras architecture; What is a tensor?; Composing models in Keras; Sequential composition; Functional composition; An overview of predefined neural network layers; Regular dense; Recurrent neural networks -- simple, LSTM, and GRU -- Convolutional and pooling layersRegularization; Batch normalization; An overview of predefined activation functions; An overview of losses functions; An overview of metrics; An overview of optimizers; Some useful operations; Saving and loading the weights and the architecture of a model; Callbacks for customizing the training process; Checkpointing; Using TensorBoard and Keras; Using Quiver and Keras; Summary; Chapter 3: Deep Learning with ConvNets; Deep convolutional neural network -- DCNN; Local receptive fields; Shared weights and bias; Pooling layers; Max-pooling; Average pooling -- ConvNets summaryAn example of DCNN -- LeNet; LeNet code in Keras; Understanding the power of deep learning; Recognizing CIFAR-10 images with deep learning; Improving the CIFAR-10 performance with deeper a network; Improving the CIFAR-10 performance with data augmentation; Predicting with CIFAR-10; Very deep convolutional networks for large-scale image recognition; Recognizing cats with a VGG-16 net; Utilizing Keras built-in VGG-16 net module; Recycling pre-built deep learning models for extracting features; Very deep inception-v3 net used for transfer learning; Summary
|
506 |
|
|
|a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition
|
538 |
|
|
|a Navigateur internet ; lecteur de fichiers PDF.
|
650 |
|
0 |
|a Python (Computer program language).
|2 lc
|
650 |
|
0 |
|a Neural networks (Computer science).
|2 lc
|
650 |
|
0 |
|a Machine learning.
|2 lc
|
650 |
|
7 |
|0 (IdRef)051626225
|1 http://www.idref.fr/051626225/id
|a Python (langage de programmation).
|2 ram
|
650 |
|
7 |
|0 (IdRef)040813878
|1 http://www.idref.fr/040813878/id
|a Réseaux neuronaux (ordinateur).
|2 ram
|
650 |
|
7 |
|0 (IdRef)191211559
|1 http://www.idref.fr/191211559/id
|a Apprentissage machine.
|2 ram
|
700 |
1 |
|
|0 (IdRef)115797718
|1 http://www.idref.fr/115797718/id
|a Pal, Sujit.
|4 aut.
|e Auteur
|
856 |
|
|
|q HTML
|u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88842775
|w Données éditeur
|z Accès à l'E-book
|
886 |
2 |
|
|2 unimarc
|a 181
|a i#
|b xxxe##
|
993 |
|
|
|a E-Book
|
994 |
|
|
|a BNUM
|
995 |
|
|
|a 200819674
|