Deep learning with Keras : implement neural networks with Keras on Theano and TensorFlow

Enregistré dans:
Détails bibliographiques
Auteur principal: Gulli, Antonio. (Auteur)
Autres auteurs: Pal, Sujit. (Auteur)
Support: E-Book
Langue: Anglais
Publié: Birmingham : Packt Publishing. C 2017.
Sujets:
Autres localisations: Voir dans le Sudoc
Accès en ligne: Accès à l'E-book
LEADER 05854cmm a2200745 i 4500
001 ebook-200819674
005 20240321105223.0
007 cr|cuu---auauu
008 170522t20172017uk ||||f|||d ||||||eng d
020 |a 1787129039 
020 |a 9781787129030 
035 |a (OCoLC)987616110 
035 |a FRCYB88842775 
035 |a FRCYB56788842775 
035 |a FRCYB08288842775 
035 |a FRCYB09888842775 
035 |a FRCYB10288842775 
035 |a FRCYB14088842775 
035 |a FRCYB17088842775 
035 |a FRCYB19188842775 
035 |a FRCYB24288842775 
035 |a FRCYB24788842775 
035 |a FRCYB24888842775 
035 |a FRCYB26088842775 
035 |a FRCYB26888842775 
035 |a FRCYB27488842775 
035 |a FRCYB29388842775 
035 |a FRCYB29588842775 
035 |a FRCYB55488842775 
035 |a FRCYB55988842775 
035 |a FRCYB04188842775 
035 |a FRCYB57188842775 
035 |a FRCYB07488842775 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
050 4 |a T55.4-60.8 
100 1 |0 (IdRef)195490932  |1 http://www.idref.fr/195490932/id  |a Gulli, Antonio.  |4 aut.  |e Auteur 
245 1 0 |a Deep learning with Keras :  |b implement neural networks with Keras on Theano and TensorFlow   |c Antonio Gulli, Sujit Pal. 
256 |a Données textuelles. 
264 1 |a Birmingham :  |b Packt Publishing. 
264 4 |c C 2017. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Titre provenant de la p. de titre du document numérisé. 
500 |a Numérisation de l'édition de : Birmingham : Packt Publishing, cop. 2017. 
500 |a La pagination de l'édition imprimée correspondante est de 310 p. 
501 |a Notice rédigée d'après la consultation, 2017-05-22. 
501 |a L'impression du document génère 310 p. 
505 0 |a Cover; Copyright; Credits; About the Authors; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Neural Networks Foundations; Perceptron; The first example of Keras code; Multilayer perceptron -- the first example of a network; Problems in training the perceptron and a solution; Activation function -- sigmoid; Activation function -- ReLU; Activation functions; A real example -- recognizing handwritten digits; One-hot encoding -- OHE; Defining a simple neural net in Keras; Running a simple Keras net and establishing a baseline -- Improving the simple net in Keras with hidden layersFurther improving the simple net in Keras with dropout; Testing different optimizers in Keras; Increasing the number of epochs; Controlling the optimizer learning rate; Increasing the number of internal hidden neurons; Increasing the size of batch computation; Summarizing the experiments run for recognizing handwritten charts; Adopting regularization for avoiding overfitting; Hyperparameters tuning; Predicting output; A practical overview of backpropagation; Towards a deep learning approach; Summary; Chapter 2: Keras Installation and API -- Installing KerasStep 1 -- install some useful dependencies; Step 2 -- install Theano; Step 3 -- install TensorFlow; Step 4 -- install Keras; Step 5 -- testing Theano, TensorFlow, and Keras; Configuring Keras; Installing Keras on Docker; Installing Keras on Google Cloud ML; Installing Keras on Amazon AWS; Installing Keras on Microsoft Azure; Keras API; Getting started with Keras architecture; What is a tensor?; Composing models in Keras; Sequential composition; Functional composition; An overview of predefined neural network layers; Regular dense; Recurrent neural networks -- simple, LSTM, and GRU -- Convolutional and pooling layersRegularization; Batch normalization; An overview of predefined activation functions; An overview of losses functions; An overview of metrics; An overview of optimizers; Some useful operations; Saving and loading the weights and the architecture of a model; Callbacks for customizing the training process; Checkpointing; Using TensorBoard and Keras; Using Quiver and Keras; Summary; Chapter 3: Deep Learning with ConvNets; Deep convolutional neural network -- DCNN; Local receptive fields; Shared weights and bias; Pooling layers; Max-pooling; Average pooling -- ConvNets summaryAn example of DCNN -- LeNet; LeNet code in Keras; Understanding the power of deep learning; Recognizing CIFAR-10 images with deep learning; Improving the CIFAR-10 performance with deeper a network; Improving the CIFAR-10 performance with data augmentation; Predicting with CIFAR-10; Very deep convolutional networks for large-scale image recognition; Recognizing cats with a VGG-16 net; Utilizing Keras built-in VGG-16 net module; Recycling pre-built deep learning models for extracting features; Very deep inception-v3 net used for transfer learning; Summary 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
538 |a Navigateur internet ; lecteur de fichiers PDF. 
650 0 |a Python (Computer program language).  |2 lc 
650 0 |a Neural networks (Computer science).  |2 lc 
650 0 |a Machine learning.  |2 lc 
650 7 |0 (IdRef)051626225  |1 http://www.idref.fr/051626225/id  |a Python (langage de programmation).  |2 ram 
650 7 |0 (IdRef)040813878  |1 http://www.idref.fr/040813878/id  |a Réseaux neuronaux (ordinateur).  |2 ram 
650 7 |0 (IdRef)191211559  |1 http://www.idref.fr/191211559/id  |a Apprentissage machine.  |2 ram 
700 1 |0 (IdRef)115797718  |1 http://www.idref.fr/115797718/id  |a Pal, Sujit.  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88842775  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 200819674