Apache Mahout essentials : implement top-notch machine learning algorithms for classification, clustering, and recommendations with Apache Mahout

Enregistré dans:
Détails bibliographiques
Auteur principal: Withanawasam (Jayani). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Birmingham : Packt Publishing, 2015.
Collection: Open source*.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Apache Mahout is a scalable machine learning library with algorithms for clustering, classification, and recommendations. It empowers users to analyze patterns in large, diverse, and complex datasets faster and more scalably. This book is an all-inclusive guide to analyzing large and complex datasets using Apache Mahout. It explains complicated but very effective machine learning algorithms simply, in relation to real-world practical examples. Starting from the fundamental concepts of machine learning and Apache Mahout, it guides you through Apache Mahout's implementations of machine learning techniques including classification, clustering, and recommendations. Real-world applications, a diverse range of popular algorithms and their implementations, code examples, evaluation strategies, and best practices are given for each technique. You will learn data visualization techniques for Apache Mahout to bring your data to life. --
Accès en ligne: Accès à l'E-book
Lien: Collection principale: Open source* : community experience distilled
LEADER 04086cmm a2200817 i 4500
001 ebook-192458701
005 20240209145527.0
007 cr|cz|---auuuu
008 160412t20152015uk ||||f|||d ||||||eng d
020 |a 1783555009 
020 |z 9781783554997 
020 |a 1783554991 
020 |a 9781783554997 
020 |a 9781783555000 
035 |a (OCoLC)946485123 
035 |a ocn918902482 
035 |z ocm911845952 
035 |z ocm913922440 
035 |a DEBSZ442841221 
035 |a DEBBGBV043020049 
035 |a DEBSZ455696152 
035 |a CHVBK339290870 
035 |a CHBIS010511886 
035 |a FRCYB88853031 
035 |a FRCYB08288853031 
035 |a FRCYB14088853031 
035 |a FRCYB19188853031 
035 |a FRCYB24288853031 
035 |a FRCYB24788853031 
035 |a FRCYB26088853031 
035 |a FRCYB26888853031 
035 |a FRCYB27488853031 
035 |a FRCYB29388853031 
035 |a FRCYB29588853031 
035 |a FRCYB55488853031 
035 |a FRCYB55988853031 
035 |a FRCYB56788853031 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
050 4 |a Q325.5 
082 0 |a 005.2 
100 0 |0 (IdRef)192458744  |1 http://www.idref.fr/192458744/id  |a Withanawasam  |d (Jayani).  |4 aut.  |e Auteur 
245 1 0 |a Apache Mahout essentials :  |b implement top-notch machine learning algorithms for classification, clustering, and recommendations with Apache Mahout   |c Jayani Withanawasam. 
246 1 3 |a Implement top-notch machine learning algorithms for classification, clustering, and recommendations with Apache Mahout 
256 |a Données textuelles (1 fichier PDF). 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2015. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
490 1 |a Community experience distilled 
500 |a Titre provenant de l'écran-titre. 
500 |a Numérisation de l'édition de Birmingham : Packt publishing, cop. 2015. 
500 |a L'impression du document génère 165 pages. 
501 |a Description d'après la consultation, 2016-04-12. 
506 |a L'accès à cette ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Apache Mahout is a scalable machine learning library with algorithms for clustering, classification, and recommendations. It empowers users to analyze patterns in large, diverse, and complex datasets faster and more scalably. This book is an all-inclusive guide to analyzing large and complex datasets using Apache Mahout. It explains complicated but very effective machine learning algorithms simply, in relation to real-world practical examples. Starting from the fundamental concepts of machine learning and Apache Mahout, it guides you through Apache Mahout's implementations of machine learning techniques including classification, clustering, and recommendations. Real-world applications, a diverse range of popular algorithms and their implementations, code examples, evaluation strategies, and best practices are given for each technique. You will learn data visualization techniques for Apache Mahout to bring your data to life. -- 
538 |a Configuration requise : navigateur internet. 
630 0 0 |a Mahout (Electronic resource).  |2 lc 
650 0 |a Machine learning.  |2 lc 
650 0 |a Artificial intelligence.  |2 lc 
650 7 |0 (IdRef)027940373  |1 http://www.idref.fr/027940373/id  |a Apprentissage automatique.  |2 ram 
650 7 |0 (IdRef)167193686  |1 http://www.idref.fr/167193686/id  |a Données massives.  |2 ram 
650 7 |0 (IdRef)027282171  |1 http://www.idref.fr/027282171/id  |a Algorithmes.  |2 ram 
760 0 |t Open source* : community experience distilled  |d Birmingham : Packt publishing, 2013  |w (ABES)172618363 
830 0 |a Open source*.  |f 2013 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88853031  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 192458701