Mumford-Tate groups and domains : their geometry and arithmetic

Enregistré dans:
Détails bibliographiques
Auteur principal: Green, Mark L. (1947-....; mathématicien). (Auteur)
Autres auteurs: Griffiths, Phillip A. (1938-....; mathématicien). (Auteur), Kerr, Matthew D. (1975-....).
Support: E-Book
Langue: Anglais
Publié: Princeton ; N.J : Princeton University Press, 2012.
Collection: Annals of Mathematics Studies ; 183
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Biographical note: Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis
Accès en ligne: Accès à l'E-book
Lien: Collection principale: Annals of Mathematics Studies
LEADER 04738cmm a2200781 4500
001 ebook-187959668
005 20230321095815.0
007 cr|uuu---uuuuu
008 150901q2012uuuugw |||| |||d ||||||eng d
020 |a 9781400842735 
020 |a 9781400842735 
024 7 |a 10.1515/9781400842735  |2 DOI 
035 |a 199244995  |9 sudoc 
035 |a (OCoLC)872423441 
035 |a FRCYB07488838076 
035 |a FRCYB88838076 
035 |a FRCYB08288838076 
035 |a FRCYB14088838076 
035 |a FRCYB24288838076 
035 |a FRCYB26088838076 
035 |a FRCYB26888838076 
035 |a FRCYB29388838076 
035 |a FRCYB29588838076 
035 |a FRCYB55488838076 
035 |a FRCYB55988838076 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a gw  |a us 
050 4 |a QA564 
050 4 |a QA564  |b .G634 2012eb 
050 4 |a MAT 
050 4 |a MAT040000 
082 0 |a 516.3/5  |2 23 
084 |a 14-02.  |2 msc 
084 |a 14C30.  |2 msc 
084 |a 14D07.  |2 msc 
100 1 |0 (IdRef)095095993  |1 http://www.idref.fr/095095993/id  |a Green, Mark L.  |d (1947-....;   |c mathématicien).  |4 aut.  |e Auteur 
245 1 0 |a Mumford-Tate groups and domains :  |b their geometry and arithmetic   |c Mark Green, Phillip A. Griffiths and Matt Kerr. 
256 |a Données textuelles. 
264 1 |a Princeton ;  |a N.J :  |b Princeton University Press,  |c 2012. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
490 1 |a Annals of Mathematics Studies ;  |v 183 
500 |a La pagination de l'édition imprimée correspondante est de : 288 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Biographical note: Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis 
520 |a Main description: Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a Mathematics, other.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Mathematik.  |2 lc 
650 0 |a Mumford-Tate groups.  |2 lc 
650 7 |a MATHEMATICS  |x Geometry  |x Algebraic.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Group Theory.  |2 bisacsh 
650 0 |a Mumford-Tate groups.  |2 lc 
650 7 |0 (IdRef)030866855  |1 http://www.idref.fr/030866855/id  |a Hodge, Théorie de.  |2 ram 
650 7 |0 (IdRef)027228002  |1 http://www.idref.fr/027228002/id  |a Géométrie algébrique.  |2 ram 
700 1 |0 (IdRef)031633595  |1 http://www.idref.fr/031633595/id  |a Griffiths, Phillip A.  |d (1938-....;   |c mathématicien).  |4 aut.  |e Auteur 
700 1 |0 (IdRef)161699960  |1 http://www.idref.fr/161699960/id  |a Kerr, Matthew D.  |d (1975-....).  |4 aut.  |e Auteur 
760 0 |t Annals of Mathematics Studies  |g 183 
830 0 |a Annals of Mathematics Studies ;  |v 183 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838076  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 187959668