Weyl group multiple Dirichlet series : type A combinatorial theory

Enregistré dans:
Détails bibliographiques
Auteur principal: Brubaker, Ben (1976-....). (Auteur)
Autres auteurs: Bump, Daniel (1952-....). (Auteur), Friedberg, Solomon (1958-....).
Support: E-Book
Langue: Anglais
Publié: Princeton ; N.J : Princeton University Press, 2011.
Collection: Annals of mathematics studies (Online) ; 175
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Main description: Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation
Accès en ligne: Accès à l'E-book
Lien: Collection principale: Annals of mathematics studies (Online)
LEADER 04647cmm a2200817 4500
001 ebook-18795755X
005 20220301014926.0
007 cr|uuu---uuuuu
008 150901q2011uuuugw ||||f|||d ||||||eng d
020 |a 9781400838998 
020 |a 9781400838998 
024 7 |a 10.1515/9781400838998  |2 DOI 
035 |a 199244618  |9 sudoc 
035 |a (OCoLC)780498906 
035 |a FRCYB07488838034 
035 |a FRCYB88838034 
035 |a FRCYB07888838034 
035 |a FRCYB08288838034 
035 |a FRCYB14088838034 
035 |a FRCYB24288838034 
035 |a FRCYB26688838034 
035 |a FRCYB26788838034 
035 |a FRCYB26888838034 
035 |a FRCYB29388838034 
035 |a FRCYB29588838034 
035 |a FRCYB43288838034 
035 |a FRCYB55488838034 
035 |a FRCYB55988838034 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a gw  |a us 
050 4 |a QA295 
050 4 |a QA295  |b .B876 2011eb 
050 4 |a MAT 
050 4 |a MAT036000 
082 0 |a 515/.243  |2 22 
100 1 |0 (IdRef)154830615  |1 http://www.idref.fr/154830615/id  |a Brubaker, Ben  |d (1976-....).  |4 aut.  |e Auteur 
245 1 0 |a Weyl group multiple Dirichlet series :  |b type A combinatorial theory   |c Ben Brubaker, Daniel Bump, and Solomon Friedberg. 
256 |a Données textuelles. 
264 1 |a Princeton ;  |a N.J :  |b Princeton University Press,  |c 2011. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
490 1 |a Annals of Mathematics Studies ;  |v 175 
500 |a La pagination de l'édition imprimée correspondante est de : 172 p. 
504 |a Bibliogr. Notation. Index. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Main description: Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. These interesting functions may be described as Whittaker coefficients of Eisenstein series on metaplectic groups, but this characterization doesn't readily lead to an explicit description of the coefficients. The coefficients may be expressed as sums over Kashiwara crystals, which are combinatorial analogs of characters of irreducible representations of Lie groups. For Cartan Type A, there are two distinguished descriptions, and if these are known to be equal, the analytic properties of the Dirichlet series follow. Proving the equality of the two combinatorial definitions of the Weyl group multiple Dirichlet series requires the comparison of two sums of products of Gauss sums over lattice points in polytopes. Through a series of surprising combinatorial reductions, this is accomplished. The book includes expository material about crystals, deformations of the Weyl character formula, and the Yang-Baxter equation 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a MATHEMATICS  |x Infinity.  |2 lc 
650 0 |a MATHEMATICS  |x Number Theory.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Combinatorics and Graph Theory.  |2 lc 
650 0 |a Dirichlet series.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Mathematik.  |2 lc 
650 0 |a Weyl groups.  |2 lc 
650 0 |a Dirichlet series.  |2 lc 
650 0 |a Weyl groups.  |2 lc 
650 7 |0 (IdRef)031687067  |1 http://www.idref.fr/031687067/id  |a Dirichlet, Séries de.  |2 ram 
650 7 |0 (IdRef)157176924  |1 http://www.idref.fr/157176924/id  |a Groupes de Weyl.  |2 ram 
700 1 |0 (IdRef)067236146  |1 http://www.idref.fr/067236146/id  |a Bump, Daniel  |d (1952-....).  |4 aut.  |e Auteur 
700 1 |0 (IdRef)113167881  |1 http://www.idref.fr/113167881/id  |a Friedberg, Solomon  |d (1958-....).  |4 aut.  |e Auteur 
760 0 |t Annals of mathematics studies (Online)  |g 175  |w (ABES)234891467 
830 0 |a Annals of mathematics studies (Online) ;  |v 175 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838034  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 18795755X