Nonplussed! : mathematical proof of implausible ideas

Enregistré dans:
Détails bibliographiques
Auteur principal: Havil, Julian (1952-....; mathématicien). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Princeton ; N.J : Princeton University Press, 2010.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Main description: Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles
Accès en ligne: Accès à l'E-book
LEADER 04315cmm a2200841 4500
001 ebook-18795660X
005 20220301005943.0
007 cr|uuu---uuuuu
008 150901q2010uuuugw |||| |||d ||||||eng d
020 |a 9781400837380 
020 |a 9781400837380 
024 7 |a 10.1515/9781400837380  |2 DOI 
035 |a 199244898  |9 sudoc 
035 |a (OCoLC)780498899 
035 |a FRCYB07488838065 
035 |a FRCYB88838065 
035 |a FRCYB08288838065 
035 |a FRCYB08888838065 
035 |a FRCYB12688838065 
035 |a FRCYB14088838065 
035 |a FRCYB15188838065 
035 |a FRCYB16788838065 
035 |a FRCYB17288838065 
035 |a FRCYB17988838065 
035 |a FRCYB19588838065 
035 |a FRCYB24288838065 
035 |a FRCYB24788838065 
035 |a FRCYB26088838065 
035 |a FRCYB26888838065 
035 |a FRCYB29388838065 
035 |a FRCYB29588838065 
035 |a FRCYB37188838065 
035 |a FRCYB55488838065 
035 |a FRCYB55988838065 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a gw  |a us 
050 4 |a QA99 
050 4 |a QA99  |b .H38 2010eb 
050 4 |a MAT 
050 4 |a MAT003000 
082 0 |a 510  |2 22 
100 1 |0 (IdRef)074241117  |1 http://www.idref.fr/074241117/id  |a Havil, Julian  |d (1952-....;   |c mathématicien).  |4 aut.  |e Auteur 
245 1 0 |a Nonplussed! :  |b mathematical proof of implausible ideas   |c Julian Havil. 
256 |a Données textuelles. 
264 1 |a Princeton ;  |a N.J :  |b Princeton University Press,  |c 2010. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a La pagination de l'édition imprimée correspondante est de : 216 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Main description: Math--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a Mathematical recreations.  |2 lc 
650 0 |a MATHEMATICS  |x Essays.  |2 lc 
650 0 |a Mathematics  |x Miscellanea.  |2 lc 
650 0 |a MATHEMATICS  |x Pre-Calculus.  |2 lc 
650 0 |a MATHEMATICS  |x Reference.  |2 lc 
650 0 |a Paradox  |x Mathematics.  |2 lc 
650 0 |a Paradox  |x Mathematics.  |2 lc 
650 0 |a SCIENCE  |x Applied Sciences.  |2 lc 
650 0 |a Applied Mathematics.  |2 lc 
650 0 |a Mathematical recreations.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Mathematik.  |2 lc 
650 0 |0 (IdRef)02723200X  |1 http://www.idref.fr/02723200X/id  |a Devinettes et énigmes.  |2 lc 
650 7 |0 (IdRef)027235645  |1 http://www.idref.fr/027235645/id  |a Jeux mathématiques.  |2 ram 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838065  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 18795660X