Quadrangular algebras

Enregistré dans:
Détails bibliographiques
Auteur principal: Weiss, Richard Mark (1946-....; mathématicien). (Auteur)
Support: E-Book
Langue: Anglais
Publié: Princeton (N. J.) : Princeton University Press, 2005.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Main description: This book introduces a new class of non-associative algebras related to certain exceptional algebraic groups and their associated buildings. Richard Weiss develops a theory of these "quadrangular algebras" that opens the first purely algebraic approach to the exceptional Moufang quadrangles. These quadrangles include both those that arise as the spherical buildings associated to groups of type E6, E7, and E8 as well as the exotic quadrangles "of type F4" discovered earlier by Weiss. Based on their relationship to exceptional algebraic groups, quadrangular algebras belong in a series together with alternative and Jordan division algebras. Formally, the notion of a quadrangular algebra is derived from the notion of a pseudo-quadratic space (introduced by Jacques Tits in the study of classical groups) over a quaternion division ring. This book contains the complete classification of quadrangular algebras starting from first principles. It also shows how this classification can be made to yield the classification of exceptional Moufang quadrangles as a consequence. The book closes with a chapter on isotopes and the structure group of a quadrangular algebra. Quadrangular Algebras is intended for graduate students of mathematics as well as specialists in buildings, exceptional algebraic groups, and related algebraic structures including Jordan algebras and the algebraic theory of quadratic forms
Accès en ligne: Accès à l'E-book
LEADER 04613cmm a2200877 i 4500
001 ebook-187951233
005 20220425191127.0
007 cr|cu|---auaau
008 150901q2005uuuuus ||||f|||d ||||||eng d
020 |a 1400826942 (en ligne) 
020 |a 9781400826940 (en ligne) 
020 |a 9781400826940 
024 7 |a 10.1515/9781400826940  |2 DOI 
035 |a 199244707  |9 sudoc 
035 |a (OCoLC)780498701 
035 |a FRCYB07488838044 
035 |a FRCYB88838044 
035 |a FRCYB08288838044 
035 |a FRCYB14088838044 
035 |a FRCYB24288838044 
035 |a FRCYB26088838044 
035 |a FRCYB26888838044 
035 |a FRCYB29388838044 
035 |a FRCYB29588838044 
035 |a FRCYB55488838044 
035 |a FRCYB55988838044 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a us  |a us 
050 4 |a QA243 
050 4 |a QA243  |b .W45 2006eb 
050 4 |a MAT 
050 4 |a MAT002000 
082 0 |a 512.74  |2 22 
084 |a 17-02.  |2 msc 
084 |a 17A30.  |2 msc 
084 |a 11E04.  |2 msc 
084 |a 51E12.  |2 msc 
084 |a 51-02.  |2 msc 
100 1 |0 (IdRef)129209899  |1 http://www.idref.fr/129209899/id  |a Weiss, Richard Mark  |d (1946-....;   |c mathématicien).  |4 aut.  |e Auteur 
245 1 0 |a Quadrangular algebras   |c Richard M. Weiss. 
256 |a Données textuelles. 
264 1 |a Princeton (N. J.) :  |b Princeton University Press,  |c 2005. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
500 |a Titre provenant de la p. de titre du document numérisé. 
500 |a Numérisation de l'édition de Princeton : Princeton University, 2005. 
500 |a La pagination de l'édition imprimée correspondante est de : 144 p. 
501 |a Notice rédigée d'après la consultation, 2016-04-04. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Main description: This book introduces a new class of non-associative algebras related to certain exceptional algebraic groups and their associated buildings. Richard Weiss develops a theory of these "quadrangular algebras" that opens the first purely algebraic approach to the exceptional Moufang quadrangles. These quadrangles include both those that arise as the spherical buildings associated to groups of type E6, E7, and E8 as well as the exotic quadrangles "of type F4" discovered earlier by Weiss. Based on their relationship to exceptional algebraic groups, quadrangular algebras belong in a series together with alternative and Jordan division algebras. Formally, the notion of a quadrangular algebra is derived from the notion of a pseudo-quadratic space (introduced by Jacques Tits in the study of classical groups) over a quaternion division ring. This book contains the complete classification of quadrangular algebras starting from first principles. It also shows how this classification can be made to yield the classification of exceptional Moufang quadrangles as a consequence. The book closes with a chapter on isotopes and the structure group of a quadrangular algebra. Quadrangular Algebras is intended for graduate students of mathematics as well as specialists in buildings, exceptional algebraic groups, and related algebraic structures including Jordan algebras and the algebraic theory of quadratic forms 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a Algebra.  |2 lc 
650 0 |a MATHEMATICS  |x Algebra  |x General.  |2 lc 
650 0 |a MATHEMATICS  |x Number Theory.  |2 lc 
650 0 |a Algebra and Number Theory.  |2 lc 
650 0 |a Algebra.  |2 lc 
650 0 |a Algebraïsche structuren.  |2 lc 
650 0 |a Algèbre.  |2 lc 
650 0 |a Formes quadratiques.  |2 lc 
650 0 |a Forms, Quadratic.  |2 lc 
650 0 |a Kwadratische vormen.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Mathematik.  |2 lc 
650 0 |a Forms, Quadratic.  |2 lc 
650 0 |a Buildings (Group theory).  |2 lc 
650 0 |a Nonassociative algebras.  |2 lc 
650 7 |0 (IdRef)027754863  |1 http://www.idref.fr/027754863/id  |a Algèbres non associatives.  |2 ram 
650 7 |0 (IdRef)035600691  |1 http://www.idref.fr/035600691/id  |a Immeubles (théorie des groupes).  |2 ram 
650 7 |0 (IdRef)027282341  |1 http://www.idref.fr/027282341/id  |a Formes quadratiques.  |2 ram 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838044  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 187951233