Self-Regularity : A New Paradigm for Primal-Dual Interior-Point Algorithms

Enregistré dans:
Détails bibliographiques
Auteur principal: Terlaky, Tamas. (Auteur)
Autres auteurs: Peng, Jiming. (Auteur), Roos, Cornelis (1941-....).
Support: E-Book
Langue: Anglais
Publié: Princeton ; N.J : Princeton University Press, 2002.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Main description: Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work
Accès en ligne: Accès à l'E-book
LEADER 04494cmm a2200781 4500
001 ebook-187949883
005 20220228234318.0
007 cr|uuu---uuuuu
008 150901q2002uuuugw |||| |||d ||||||eng d
020 |a 9781400825134 
020 |a 9781400825134 
024 7 |a 10.1515/9781400825134  |2 DOI 
035 |a 199244596  |9 sudoc 
035 |a (OCoLC)785345431 
035 |a FRCYB07488838030 
035 |a FRCYB88838030 
035 |a FRCYB08288838030 
035 |a FRCYB14088838030 
035 |a FRCYB24288838030 
035 |a FRCYB26088838030 
035 |a FRCYB26888838030 
035 |a FRCYB29388838030 
035 |a FRCYB29588838030 
035 |a FRCYB55488838030 
035 |a FRCYB55988838030 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
044 |a gw  |a us 
050 4 |a QA402.5 
050 4 |a QA402.5  |b .P4185 2002eb 
050 4 |a MAT 
050 4 |a MAT003000 
082 0 |a 519.72  |2 21 
100 1 |0 (IdRef)074084321  |1 http://www.idref.fr/074084321/id  |a Terlaky, Tamas.  |4 aut.  |e Auteur 
245 1 0 |a Self-Regularity :  |b A New Paradigm for Primal-Dual Interior-Point Algorithms   |c Tamás Terlaky ; Jiming Peng, Cornelis Roos. 
256 |a Données textuelles. 
260 |a Princeton ;  |a N.J :  |b Princeton University Press,  |c 2002. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
500 |a La pagination de l'édition imprimée correspondante est de : 208 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Main description: Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work 
538 |a Nécessite un navigateur et un lecteur de fichier PDF. 
650 0 |a Interior-point methods.  |2 lc 
650 0 |a Mathematical optimization.  |2 lc 
650 0 |a MATHEMATICS  |x Applied.  |2 lc 
650 0 |a Programming (Mathematics).  |2 lc 
650 0 |a Algoritmen.  |2 lc 
650 0 |a Applied Mathematics.  |2 lc 
650 0 |a Controleleer.  |2 lc 
650 0 |a Interior-point methods.  |2 lc 
650 0 |a Mathematical optimization.  |2 lc 
650 0 |a Mathematics.  |2 lc 
650 0 |a Mathematik.  |2 lc 
650 0 |a Mathematische programmering.  |2 lc 
650 0 |a Programming (Mathematics).  |2 lc 
650 0 |a Zelfregulering.  |2 lc 
650 7 |a MATHEMATICS  |x Optimization.  |2 bisacsh 
650 7 |0 (IdRef)027241386  |1 http://www.idref.fr/027241386/id  |a Programmation (mathématiques).  |2 ram 
650 7 |0 (IdRef)027244067  |1 http://www.idref.fr/027244067/id  |a Optimisation mathématique.  |2 ram 
700 1 |a Peng, Jiming.  |4 aut.  |e Auteur 
700 1 |0 (IdRef)074084267  |1 http://www.idref.fr/074084267/id  |a Roos, Cornelis  |d (1941-....).  |4 aut.  |e Auteur 
856 |q HTML  |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88838030  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 187949883