Energy Optimization in Process Systems and Fuel Cells

Enregistré dans:
Détails bibliographiques
Auteur principal: Sieniutycz, Stanisław. (Auteur)
Autres auteurs: Jezowski, Jacek. (Auteur)
Support: E-Book
Langue: Anglais
Publié: San Diego, CA : Elsevier Science, 2013.
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Energy optimization and integration of energy systems is becoming more important in today's world, which is struggling with high energy prices, imminent energy shortages, and global pollution. Therefore, there is a strong need for sustainable energy supplies such as fuel cells that enjoy increasing interest due to their high efficiency and low pollution potential. This book covers the optimization and integration of energy systems. The author is a world-renowned specialist with extensive didactic experience. His systematic approach uses thermodynamics, kinetics and economics to study the
Accès en ligne: Accès à l'E-book
LEADER 06829cmm a2200721 i 4500
001 ebook-176639500
005 20230112153120.0
007 cr|cuu---auauu
008 140303q2013uuuuus ||||g|||d ||||||eng d
020 |a 9780080982274 
020 |a 0080982271 (electronic bk) 
020 |a 9780080982212 (electronic bk) 
020 |a 0080982212 (electronic bk) 
035 |a 182574997  |9 sudoc 
035 |a (OCoLC)872364761 
035 |a FRCYB88814349 
035 |a FRCYB07488814349 
035 |a FRCYB04188814349 
035 |a FRCYB08288814349 
035 |a FRCYB14088814349 
035 |a FRCYB24288814349 
035 |a FRCYB26088814349 
035 |a FRCYB26888814349 
035 |a FRCYB29188814349 
035 |a FRCYB29388814349 
035 |a FRCYB29588814349 
035 |a FRCYB54288814349 
035 |a FRCYB55488814349 
035 |a FRCYB55988814349 
035 |a Elsevierocn829461225 
035 |a ocn829461225 
035 |a (OCoLC)829461225  |z (OCoLC)830038143 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
100 1 |0 (IdRef)032009755  |1 http://www.idref.fr/032009755/id  |a Sieniutycz, Stanisław.  |4 aut.  |e Auteur 
245 1 0 |a Energy Optimization in Process Systems and Fuel Cells  |h [Ressource électronique]   |c Stanislaw Sieniutycz,... Jacek Jezowski,.... 
256 |a Données textuelles. 
264 1 |a San Diego, CA :  |b Elsevier Science,  |c 2013. 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
500 |a Description basée sur l'édition papier. 
500 |a 5.5 Efficiencies of energy conversion. 
500 |a Titre provenant de la page de titre du document numérique. 
500 |a Numérisation de la 2e édition de San Diego : Elsevier Science & Technology Books, 2013. 
500 |a La pagination de l'édition imprimée correspondante est de 820 p. 
504 |a Bibliographie p. 697-771. Index. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
516 |a Fichier PDF. 
520 |a Energy optimization and integration of energy systems is becoming more important in today's world, which is struggling with high energy prices, imminent energy shortages, and global pollution. Therefore, there is a strong need for sustainable energy supplies such as fuel cells that enjoy increasing interest due to their high efficiency and low pollution potential. This book covers the optimization and integration of energy systems. The author is a world-renowned specialist with extensive didactic experience. His systematic approach uses thermodynamics, kinetics and economics to study the 
538 |a Nécessite un lecteur de fichier PDF. 
559 2 |p 1  |b 1 - Brief review of static optimization methods  |p P. 45  |b 2 - Dynamic optimization problems  |p P. 85  |b 3 - Energy limits for thermal engines and heat pumps at steady states  |p P. 127  |b 4 - Hamiltonian optimization of imperfect cascades  |p P. 167  |b 5 - Maximum power from solar energy  |p P. 215  |b 6 - Hamilton-Jacobi-Bellman theory of energy systems  |p P. 237  |b 7 - Numerical optimization in allocation, storage and recovery of thermal energy and resources  |p P. 271  |b 8 - Optimal control of separation processes  |p P. 321  |b 9 - Optimal decisions for chemical reactors  |p P. 373  |b 10 - Fuel cells and limiting performance of electrochemobiological systems  |p P. 429  |b 11 - Systems theory in thermal and chemical engineering  |p P. 465  |b 12 - Heat integration within process integration  |p P. 475  |b 13 - Maximum heat recovery and its consequences for process system design  |p P. 499  |b 14 - Targeting and supertargeting in heat exchanger network design  |p P. 507  |b 15 - Minimum utility cost (MUC) target by optimization approaches  |p P. 533  |b 16 - Minimum number of units (MNU) and minimum total surface area (MTA) targets  |p P. 571  |b 17 - Simultaneous HEN targeting for total annual cost  |p P. 585  |b 18 - Heat exchanger network synthesis  |p P. 621  |b 19 - Heat exchanger network retrofit  |p P. 651  |b 20 - Approaches to water network design 
559 1 |b Temperature decrease-cooling scheme1.6.5 Equality constraints handling in ARS, GA, and SA; 2 Dynamic optimization problems; 2.1 Discrete representations and dynamic programming algorithms; 2.2 Recurrence equations; 2.3 Discrete processes linear with respect to the time interval; 2.4 Discrete algorithm of Pontryagin{'}s type for processes linear in thetaN; 2.5 Hamilton-Jacobi-Bellman equations for continuous systems; 2.5.1 Continuous Optimization Problem; 2.5.2 Optimal Performance Functions and Related HJB Equations; 2.5.3 Optimal Performance in Terms of the Forward DP Algorithm 
559 1 |b 2.5.4 Link with Gauged Integrals of Performance2.5.5 Diversity of Equivalent Formulations; 2.5.6 Passage to the Hamilton-Jacobi Equation; 2.6 Continuous Maximum Principle; 2.7 Calculus of variations; 2.8 Viscosity solutions and nonsmooth analyses; The notion of viscosity solutions; Definition; 2.9 Stochastic control and stochastic Maximum Principle; 3 Energy limits for thermal engines and heat pumps at steady states; 3.1 Introduction: role of optimization in determining thermodynamic limits; 3.2 Classical problem of thermal engine driven by heat flux; 3.2.1 Maximum Power in Thermal Engines 
559 1 |b 3.2.2 Lagrange Multipliers and Endoreversible System3.2.3 Analysis of Imperfect Units in Terms of Efficiency Control; 3.2.4 Introducing Carnot Temperature Controls; 3.2.5 Maximum Power in Terms of Both Carnot Temperatures; 3.2.6 Entropy Production and Flux-Dependent Efficiencies; 3.3 Toward work limits in sequential systems; 3.4 Energy utilization and heat pumps; 3.5 Thermal separation processes; 3.6 Steady chemical, electrochemical, and other systems; 3.7 Limits in living systems; 3.8 Final remarks; 4 Hamiltonian optimization of imperfect cascades 
559 1 |b 4.1 Basic properties of irreversible cascade operations with a work flux4.2 Description of imperfect units in terms of Carnot temperature control; 4.3 Single-stage formulae in a model of cascade operation; 4.4 Work optimization in cascade by discrete maximum principle; 4.5 Example; 4.6 Continuous imperfect system with two finite reservoirs; 4.7 Final remarks; 5 Maximum power from solar energy; 5.1 Introducing Carnot controls for modeling solar-assisted operations; 5.2 Thermodynamics of radiation; 5.3 Classical exergy of radiation; 5.4 Flux of classical exergy 
650 7 |0 (IdRef)027393364  |1 http://www.idref.fr/027393364/id  |a Piles à combustible.  |2 ram 
700 1 |0 (IdRef)17783109X  |1 http://www.idref.fr/17783109X/id  |a Jezowski, Jacek.  |4 aut.  |e Auteur 
856 |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88814349  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 176639500