|
|
|
|
LEADER |
06829cmm a2200721 i 4500 |
001 |
ebook-176639500 |
005 |
20230112153120.0 |
007 |
cr|cuu---auauu |
008 |
140303q2013uuuuus ||||g|||d ||||||eng d |
020 |
|
|
|a 9780080982274
|
020 |
|
|
|a 0080982271 (electronic bk)
|
020 |
|
|
|a 9780080982212 (electronic bk)
|
020 |
|
|
|a 0080982212 (electronic bk)
|
035 |
|
|
|a 182574997
|9 sudoc
|
035 |
|
|
|a (OCoLC)872364761
|
035 |
|
|
|a FRCYB88814349
|
035 |
|
|
|a FRCYB07488814349
|
035 |
|
|
|a FRCYB04188814349
|
035 |
|
|
|a FRCYB08288814349
|
035 |
|
|
|a FRCYB14088814349
|
035 |
|
|
|a FRCYB24288814349
|
035 |
|
|
|a FRCYB26088814349
|
035 |
|
|
|a FRCYB26888814349
|
035 |
|
|
|a FRCYB29188814349
|
035 |
|
|
|a FRCYB29388814349
|
035 |
|
|
|a FRCYB29588814349
|
035 |
|
|
|a FRCYB54288814349
|
035 |
|
|
|a FRCYB55488814349
|
035 |
|
|
|a FRCYB55988814349
|
035 |
|
|
|a Elsevierocn829461225
|
035 |
|
|
|a ocn829461225
|
035 |
|
|
|a (OCoLC)829461225
|z (OCoLC)830038143
|
040 |
|
|
|a ABES
|b fre
|e AFNOR
|
041 |
0 |
|
|a eng
|2 639-2
|
100 |
1 |
|
|0 (IdRef)032009755
|1 http://www.idref.fr/032009755/id
|a Sieniutycz, Stanisław.
|4 aut.
|e Auteur
|
245 |
1 |
0 |
|a Energy Optimization in Process Systems and Fuel Cells
|h [Ressource électronique]
|c Stanislaw Sieniutycz,... Jacek Jezowski,....
|
256 |
|
|
|a Données textuelles.
|
264 |
|
1 |
|a San Diego, CA :
|b Elsevier Science,
|c 2013.
|
336 |
|
|
|b txt
|2 rdacontent
|
337 |
|
|
|b c
|2 rdamedia
|
337 |
|
|
|b b
|2 isbdmedia
|
500 |
|
|
|a Description basée sur l'édition papier.
|
500 |
|
|
|a 5.5 Efficiencies of energy conversion.
|
500 |
|
|
|a Titre provenant de la page de titre du document numérique.
|
500 |
|
|
|a Numérisation de la 2e édition de San Diego : Elsevier Science & Technology Books, 2013.
|
500 |
|
|
|a La pagination de l'édition imprimée correspondante est de 820 p.
|
504 |
|
|
|a Bibliographie p. 697-771. Index.
|
506 |
|
|
|a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition
|
516 |
|
|
|a Fichier PDF.
|
520 |
|
|
|a Energy optimization and integration of energy systems is becoming more important in today's world, which is struggling with high energy prices, imminent energy shortages, and global pollution. Therefore, there is a strong need for sustainable energy supplies such as fuel cells that enjoy increasing interest due to their high efficiency and low pollution potential. This book covers the optimization and integration of energy systems. The author is a world-renowned specialist with extensive didactic experience. His systematic approach uses thermodynamics, kinetics and economics to study the
|
538 |
|
|
|a Nécessite un lecteur de fichier PDF.
|
559 |
2 |
|
|p 1
|b 1 - Brief review of static optimization methods
|p P. 45
|b 2 - Dynamic optimization problems
|p P. 85
|b 3 - Energy limits for thermal engines and heat pumps at steady states
|p P. 127
|b 4 - Hamiltonian optimization of imperfect cascades
|p P. 167
|b 5 - Maximum power from solar energy
|p P. 215
|b 6 - Hamilton-Jacobi-Bellman theory of energy systems
|p P. 237
|b 7 - Numerical optimization in allocation, storage and recovery of thermal energy and resources
|p P. 271
|b 8 - Optimal control of separation processes
|p P. 321
|b 9 - Optimal decisions for chemical reactors
|p P. 373
|b 10 - Fuel cells and limiting performance of electrochemobiological systems
|p P. 429
|b 11 - Systems theory in thermal and chemical engineering
|p P. 465
|b 12 - Heat integration within process integration
|p P. 475
|b 13 - Maximum heat recovery and its consequences for process system design
|p P. 499
|b 14 - Targeting and supertargeting in heat exchanger network design
|p P. 507
|b 15 - Minimum utility cost (MUC) target by optimization approaches
|p P. 533
|b 16 - Minimum number of units (MNU) and minimum total surface area (MTA) targets
|p P. 571
|b 17 - Simultaneous HEN targeting for total annual cost
|p P. 585
|b 18 - Heat exchanger network synthesis
|p P. 621
|b 19 - Heat exchanger network retrofit
|p P. 651
|b 20 - Approaches to water network design
|
559 |
1 |
|
|b Temperature decrease-cooling scheme1.6.5 Equality constraints handling in ARS, GA, and SA; 2 Dynamic optimization problems; 2.1 Discrete representations and dynamic programming algorithms; 2.2 Recurrence equations; 2.3 Discrete processes linear with respect to the time interval; 2.4 Discrete algorithm of Pontryagin{'}s type for processes linear in thetaN; 2.5 Hamilton-Jacobi-Bellman equations for continuous systems; 2.5.1 Continuous Optimization Problem; 2.5.2 Optimal Performance Functions and Related HJB Equations; 2.5.3 Optimal Performance in Terms of the Forward DP Algorithm
|
559 |
1 |
|
|b 2.5.4 Link with Gauged Integrals of Performance2.5.5 Diversity of Equivalent Formulations; 2.5.6 Passage to the Hamilton-Jacobi Equation; 2.6 Continuous Maximum Principle; 2.7 Calculus of variations; 2.8 Viscosity solutions and nonsmooth analyses; The notion of viscosity solutions; Definition; 2.9 Stochastic control and stochastic Maximum Principle; 3 Energy limits for thermal engines and heat pumps at steady states; 3.1 Introduction: role of optimization in determining thermodynamic limits; 3.2 Classical problem of thermal engine driven by heat flux; 3.2.1 Maximum Power in Thermal Engines
|
559 |
1 |
|
|b 3.2.2 Lagrange Multipliers and Endoreversible System3.2.3 Analysis of Imperfect Units in Terms of Efficiency Control; 3.2.4 Introducing Carnot Temperature Controls; 3.2.5 Maximum Power in Terms of Both Carnot Temperatures; 3.2.6 Entropy Production and Flux-Dependent Efficiencies; 3.3 Toward work limits in sequential systems; 3.4 Energy utilization and heat pumps; 3.5 Thermal separation processes; 3.6 Steady chemical, electrochemical, and other systems; 3.7 Limits in living systems; 3.8 Final remarks; 4 Hamiltonian optimization of imperfect cascades
|
559 |
1 |
|
|b 4.1 Basic properties of irreversible cascade operations with a work flux4.2 Description of imperfect units in terms of Carnot temperature control; 4.3 Single-stage formulae in a model of cascade operation; 4.4 Work optimization in cascade by discrete maximum principle; 4.5 Example; 4.6 Continuous imperfect system with two finite reservoirs; 4.7 Final remarks; 5 Maximum power from solar energy; 5.1 Introducing Carnot controls for modeling solar-assisted operations; 5.2 Thermodynamics of radiation; 5.3 Classical exergy of radiation; 5.4 Flux of classical exergy
|
650 |
|
7 |
|0 (IdRef)027393364
|1 http://www.idref.fr/027393364/id
|a Piles à combustible.
|2 ram
|
700 |
1 |
|
|0 (IdRef)17783109X
|1 http://www.idref.fr/17783109X/id
|a Jezowski, Jacek.
|4 aut.
|e Auteur
|
856 |
|
|
|u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88814349
|w Données éditeur
|z Accès à l'E-book
|
886 |
2 |
|
|2 unimarc
|a 181
|a i#
|b xxxe##
|
993 |
|
|
|a E-Book
|
994 |
|
|
|a BNUM
|
995 |
|
|
|a 176639500
|