Principles of big data preparing, sharing, and analyzing complex information

Enregistré dans:
Détails bibliographiques
Auteur principal: Berman, Jules J.. (Auteur)
Support: E-Book
Langue: Anglais
Publié: Amsterdam : Elsevier, Morgan Kaufmann, [2013]
Sujets:
Autres localisations: Voir dans le Sudoc
Résumé: Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. . Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. . Avoid the pitfalls in Big Data design and analysis. . Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources
Accès en ligne: Accès à l'E-book
LEADER 03735cmm a2200685 4500
001 ebook-171273117
005 20240908160309.0
007 cr|cuu---auauu
008 130903s2013||||ne ||||f|||d ||||||eng d
020 |a 9780124047242 
020 |a 9780124047242 
024 7 |a 10.1016/c2012-0-01249-5  |2 DOI 
035 |a (OCoLC)868058294 
035 |a FRCYB88814381 
035 |a FRCYB07488814381 
035 |a FRCYB56788814381 
035 |a FRCYB09888814381 
035 |a FRCYB14088814381 
035 |a FRCYB17088814381 
035 |a FRCYB19188814381 
035 |a FRCYB20188814381 
035 |a FRCYB24288814381 
035 |a FRCYB24788814381 
035 |a FRCYB24888814381 
035 |a FRCYB25788814381 
035 |a FRCYB26088814381 
035 |a FRCYB26888814381 
035 |a FRCYB29388814381 
035 |a FRCYB29588814381 
035 |a FRCYB30388814381 
035 |a FRCYB55488814381 
035 |a FRCYB55988814381 
035 |a FRCYB08288814381 
035 |a FRCYB57188814381 
040 |a ABES  |b fre  |e AFNOR 
041 0 |a eng  |2 639-2 
050 4 |a QA76.9.D32  |b B47 2013eb 
082 0 |a 005.74  |2 23 
100 1 |0 (IdRef)12452088X  |1 http://www.idref.fr/12452088X/id  |a Berman, Jules J..  |4 aut.  |e Auteur 
245 1 0 |a Principles of big data  |h [Ressource électronique] :  |b preparing, sharing, and analyzing complex information   |c Jules J. Berman. 
256 |a Données textuelles. 
260 |a Amsterdam :  |b Elsevier, Morgan Kaufmann,  |c [2013] 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
337 |b b  |2 isbdmedia 
338 |b ceb  |2 RDAfrCarrier 
500 |a Titre provenant de l'écran titre. 
500 |a Numérisation de l'édition de San Diego : Elsevier Science & Technology Books, 2013. 
500 |a La pagination de l'édition imprimée correspondante est de 287 p. 
506 |a L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition 
520 |a Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. . Learn general methods for specifying Big Data in a way that is understandable to humans and to computers. . Avoid the pitfalls in Big Data design and analysis. . Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources 
650 7 |0 (IdRef)167193686  |1 http://www.idref.fr/167193686/id  |a Données massives.  |2 ram 
650 7 |0 (IdRef)027575918  |1 http://www.idref.fr/027575918/id  |a Bases de données  |x Gestion.  |2 ram 
650 0 |a Big data.  |2 lc 
650 0 |a Database management.  |2 lc 
856 |u https://srvext.uco.fr/login?url=https://univ.scholarvox.com/book/88814381  |w Données éditeur  |z Accès à l'E-book 
886 2 |2 unimarc  |a 181  |a i#  |b xxxe## 
993 |a E-Book  
994 |a BNUM 
995 |a 171273117