Empilons des sphères dans toutes les dimensions
Enregistré dans:
Publié dans: | Recherche (La) No 566 |
---|---|
Autres auteurs: | , |
Support: | Article de revue |
Publié: |
2021.
|
Sujets: | |
Résumé: | Sur les étals des marchés, les oranges sont empilées de la façon la plus compacte possible. Pour savoir exactement comment les disposer afin de laisser le moins d'espace vide entre elles, il faudrait tester une infinité de possibilités. De manière plus générale, le problème du plus dense empilement de sphères identiques dans toutes les dimensions - et pas seulement les dimensions 2 et 3 usuelles - est un problème mathématique ouvert. Sauf en dimensions 8 et 24, où la mathématicienne ukrainienne Maryna Viazovska a trouvé une méthode inédite pour démontrer quelle était la configuration la plus compacte. C'est l'histoire de ces empilements, et de leurs étonnantes configurations très symétriques, qui est racontée ici. |
Lien: | Dans:
Recherche (La) |
Résumé: | Sur les étals des marchés, les oranges sont empilées de la façon la plus compacte possible. Pour savoir exactement comment les disposer afin de laisser le moins d'espace vide entre elles, il faudrait tester une infinité de possibilités. De manière plus générale, le problème du plus dense empilement de sphères identiques dans toutes les dimensions - et pas seulement les dimensions 2 et 3 usuelles - est un problème mathématique ouvert. Sauf en dimensions 8 et 24, où la mathématicienne ukrainienne Maryna Viazovska a trouvé une méthode inédite pour démontrer quelle était la configuration la plus compacte. C'est l'histoire de ces empilements, et de leurs étonnantes configurations très symétriques, qui est racontée ici. |
---|---|
Description matérielle: | p. 74-81. |
ISSN: | 0029-5671 |